

General Instruction

- Write only with pen and only non-programmable calculators are allowed.
- This theoretical exam booklet contains 63 pages, not including general instructions.
- This examination has **9 problems**.
- You will have **5 hours** to solve the exam.
- Begin only when the START command is given.
- All answers must be written in the appropriate boxes in pen in the designated areas / boxes on the **answer sheets**. You may use blank A4 paper for rough work. Answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your workings are shown.
- The invigilator will announce a **30-minute** warning before the Stop command.
- You **must stop** working when the **STOP** command is given. Failure to stop writing will lead to the disqualification of your exam.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise your hand and wait until an invigilator arrives.

GOOD LUCK!

Problems & Grading Information

Problem No	Title	Total Score	% of Total Score
1	Two Beauties of Turkey: the Van Cat and the Ankara Cat	24	8
2	A Tale of a Reactive Intermediate	77	10
3	(±)-Coerulescine	51	8
4	Symmetry Does Matter!	66	10
5	Konya, Carrot, Beta-Carotene, Vitamin-A, Immune System, Vision	100	14
6	Thermodynamics through an Interstellar Journey	80	12
7	Phthalocyanines	85	12
8	Boron Compounds and Hydrogen Storage	58	14
9	Quantification of Heavy Metal Ions	100	12
	TOTAL	641	100

Authors

ALANYALIOĞLU, Murat, Atatürk University AYDOĞAN, Abdullah, İstanbul Technical University BURAT, Ayfer Kalkan, İstanbul Technical University DAĞ, Ömer, Bilkent University DAŞTAN, Arif, Atatürk University KILIÇ, Hamdullah, Atatürk University METİN, Önder, Koç University SARAÇOĞLU, Nurullah, Atatürk University TÜRKMEN, Yunus Emre, Bilkent University ÜNLÜ, Caner, İstanbul Technical University YILMAZ, İsmail, İstanbul Technical University

Editor

SARAÇOĞLU, Nurullah, Atatürk University

Physical Constants and Equations

Avogadro's number	$N_A = 6.0221 \times 10^{23} \text{mol}^{-1}$
Boltzmann constant	$k_B = 1.3807 \ \times \ 10^{-23} {\rm JK}^{-1}$
Universal gas constant	$R = 8.3145 \mathrm{JK}^{-1}\mathrm{mol}^{-1} = 0.08205 \mathrm{atm} \mathrm{LK}^{-1}\mathrm{mol}^{-1}$
Speed of light	$c = 2.9979 \times 10^8 \text{ms}^{-1}$
Planck's constant	$h = 6.6261 \times 10^{-34}$ Js
Faraday's constant	$F = 9.6485 \times 10^4 \text{C mol}^{-1}$
Mass of electron	$m_e = 9.1093 \ \times \ 10^{-31} \ {\rm kg}$
Standard pressure	$P=1$ bar $=10^5$ Pa
Atmospheric pressure	$P_{atm} = 1.01325 \ \times \ 10^5 \ Pa = 760 \ mmHg = 760 \ torr$
Zero of the Celsius scale	273.15 K
1 picometer (pm)	$10^{-12} \text{ m}; 1 \text{ Å} = 10^{-10} \text{ m}$
1 nanometer (nm)	10 ⁻⁹ m
	$1 \text{ eV} = 1.6021 \times 10^{-19} \text{ J}$
	1 cal = 4.184 J
	$1 \text{ amu} = 1.6605 \times 10^{-27} \text{ kg}$
Charge of an electron	$1.6021 \ \times \ 10^{-19} \ C$
Ideal gas equation	PV = nRT

Physical Constants and Equations

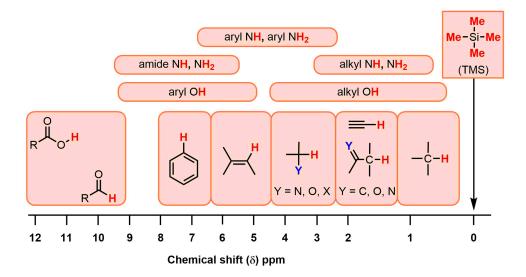
Enthalpy	H = U + PV
Gibbs free energy	G = H - TS
	$\Delta_r G = \Delta G^0 + RT lnQ$
	$\Delta_r G^0 = -RT \ln K = -nF E^0_{cell}$
Entropy change	$\Delta S = rac{q_{rev}}{T}$, where q_{rev} is heat for the reversible process
Entropy change	$\Delta S = nR \ln rac{v_2}{v_1}$ (for isothermal expansion of an ideal gas)
Nernst equation	$E = E^0 + \frac{RT}{nF} \ln \frac{C_{oxidation}}{C_{reduction}}$
Energy of a photon	$E = \frac{hc}{\lambda}$
Integrated rate law	
Zeroth-order	$[A] = [A]_0 - kt$
First-order	$\ln \left[A\right] = \ln \left[A\right]_0 - kt$
Second order	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$
Arrhenius equation	$k = A e^{-E_a/RT}$
Equation of linear calibration curve	y = mx + n
Lambert–Beer equation	$A = \varepsilon lc$

Periodic Table of Elements

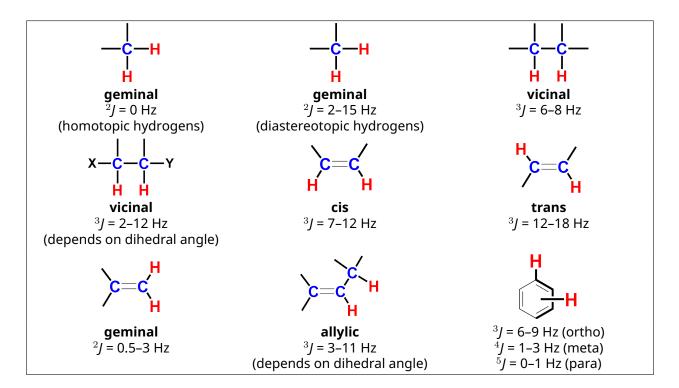
1																	18
1 H 1.008	2		S	omic num Symbo omic weig	ol							13	14	15	16	17	2 He 4.003
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 CO 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	43 Tc	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 CS 132.9	56 Ba 137.3	57-71	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 OS 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	⁸⁴ Po	At	⁸⁶ Rn
87 Fr -	⁸⁸ Ra	89-103	104 Rf	105 Db -	106 Sg -	107 Bh -	¹⁰⁸ Hs	¹⁰⁹ Mt	110 Ds -	111 Rg -	¹¹² Cn -	113 Nh -	114 FI -	¹¹⁵ Mc	116 Lv -	117 Ts -	118 Og -

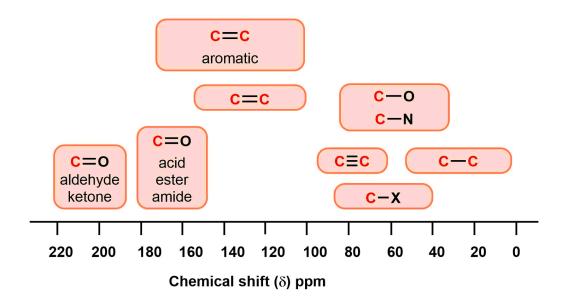
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
-	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

0-6


English (SGP) (Singapore)

Copyright © 2018 International Union of Pure and Applied Chemistry


Reproduced by permission of the International Union of Pure and Applied Chemistry



Typical Coupling Constants

IR Absorption Frequency Table

Functional Group	Type of Vibration	Absorption Frequency Region (cm ⁻¹)	Intensity		
Alcohol					
0-Н	(stretch, H-bonded)	3600-3200	strong, broad		
0-11	(stretch, free)	3700-3500	strong, sharp		
C-0	(stretch)	1150–1050	strong		
Alkane	·				
C-H	stretch	3000-2850	strong		
С-П	bending	1480–1350	variable		
Alkene					
=C-H	stretch	3100-3010	medium		
-С-П	bending	1000–675	strong		
C=C	stretch	1680–1620	variable		
Alkyl Halide	·	•			
C-F	stretch	1400–1000	strong		
C–Cl	stretch	800-600	strong		
C–Br	stretch	600–500	strong		
C-I	stretch	500	strong		
Alkyne		·			
C-H	stretch	3300	strong, sharp		
C≡C	stretch	2260–2100	variable, not present in symmetrical alkynes		

GO-10 English (SGP) (Singapore)

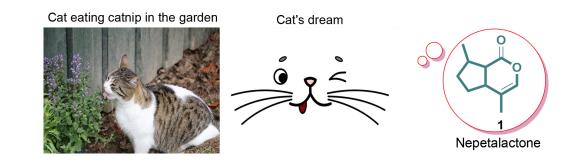
IR Absorption Frequency Table

Amine				
N-H	stretch	3500-3300	medium (primary amines have two bands; secondary amines have one band, often very weak)	
C–N	stretch	1360–1080	medium-weak	
N–H	bending	1600	medium	
Aromatic				
C–H	stretch	3100-3000	medium	
C=C	stretch	1600–1400	medium-weak, multi- ple bands	
Carbonyl				
C=O	stretch	1820–1670	strong	
Acid				
C=O	stretch	1725–1700	strong	
O-H	stretch	3300-2500	strong, very broad	
C-0	stretch	1320-1210	strong	
Aldehyde				
C=O	stretch	1740–1720	strong	
C–H	stretch	2850-2820 & 2750-2720	medium, two peaks	
Amide	·			
C=O	stretch	1690–1640	strong	
N-H	stretch	3500-3100	unsubstituted have two bands	
	bending	1640–1550		

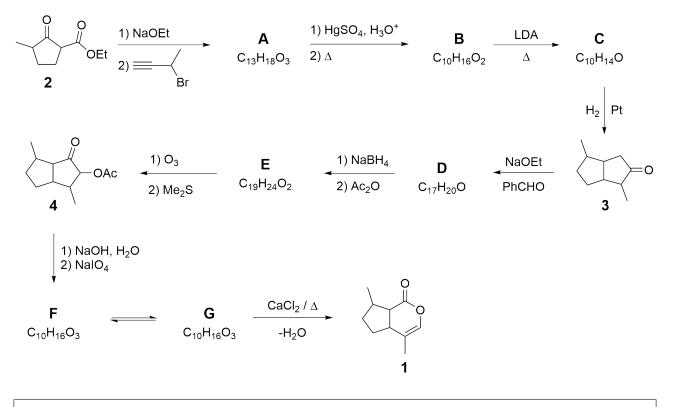
GO-11 English (SGP) (Singapore)

IR Absorption Frequency Table

Anhydride						
C=0	stretch	1830–1800 & 1775–1740	two bands			
Ester	·		·			
C=0	stretch	1750–1735	strong			
C-0	stretch	1300–1000	two bands or more			
Ketone						
acyclic	stretch	1725–1705	strong			
	stretch	3-membered - 1850	strong			
	stretch	4-membered - 1780	strong			
cyclic	stretch	stretch 5-membered - 1745				
	stretch	6-membered - 1715	strong			
	stretch	stretch 7-membered - 1705				
α, β -unsaturated	stretch	1685–1665	strong			
	conjugation moves ab	sorptions to lower wavenumb	ers			
aryl ketone	stretch	1700–1680	strong			
Ether		· ·	·			
C-0	stretch	1300–1000 (1150–1070)	strong			
Nitrile						
C≡N	stretch	2260-2210	medium			
Nitro						
N-0	stretch	1560-1515 & 1385-1345	strong, two bands			

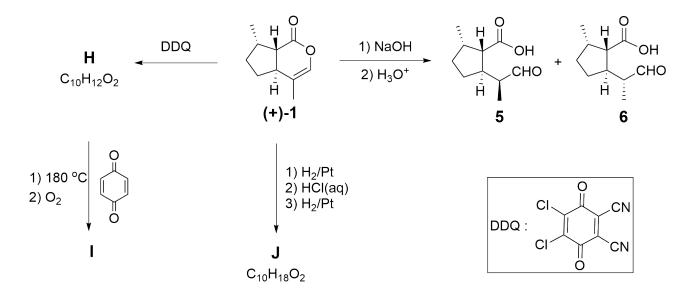

Two Beauties of Turkey: the Van Cat and the Ankara Cat

The most beautiful of cats, the Van cat is a pure breed living only in Lake Van basin. Another endemic cat breed is the Ankara cat. They are called Angora cats. Their most important feature is their two different eye colors.


Just like people, cats can sometimes be stressed and angry. Just as people are made happy by melatonin, the stress of cats can be reduced and they can be made happy thanks to a natural product. Nepetalactone is an organic compound isolated from the plant catnip (*Nepeta cataria*), which acts as a cat attractant. Nepetalactone is a ten-carbon bicyclic monoterpenoid compound derived from isoprene with two fused rings: a cyclopentane and a lactone.

Total synthesis of nepetalactone:

1.1 The above scheme describes the total synthesis of nepetalactone. <u>**Draw**</u>the 14.0pt structures of **A–G**, without stereochemical details.


Hints:

- Compound **A** has strong and sharp band at 3300 cm^{-1} in the IR spectrum.
- A, B, and F are monocyclic, while C, D, E, and G are bicyclic compounds.
- F has one doublet at \sim 9.8 ppm in the $^1\text{H-NMR}$ spectrum.

Reactions of nepetalactone:

The above scheme includes a few reactions of one of the enantiopure nepetalactone **1** isomers. Three of the reaction products (**5**, **6**, and **J**) are used as insect repellents in industry.

1.2 For the relationship between **5** and **6**, which of the following is/are true? <u>**Tick**</u> 4.0pt the box next to the correct answer(s) on your answer sheets.

Reaction of **1** with DDQ gives a highly conjugated compound **H**. Also, reaction of coumpound **H** with *p*-quinone under thermal condition gives compound **I** with the molar mass (MW) of 226.28 g/mol.

1.3 Draw the structures of H , I , and J indicating stereochemistry. 6.0pt	t
--	---

Hints:

- During the formation of I, sequential pericyclic reactions and oxidation reaction (due to the presence of O₂) take place. A well-known gas forms during the reaction.
- J has a strong and very broad band between 3300 and 2500 cm⁻¹ in the IR spectrum.

Two Beauties of Turkey: the Van Cat and the Ankara Cat

1.1 (14.0 pt)

Α	В
C	D
E	r
E	F
E	F
E	F
E	F
E	F
E	F
E	F
E	F
E	F
E	F
E	F
E	F
	F
E G	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F

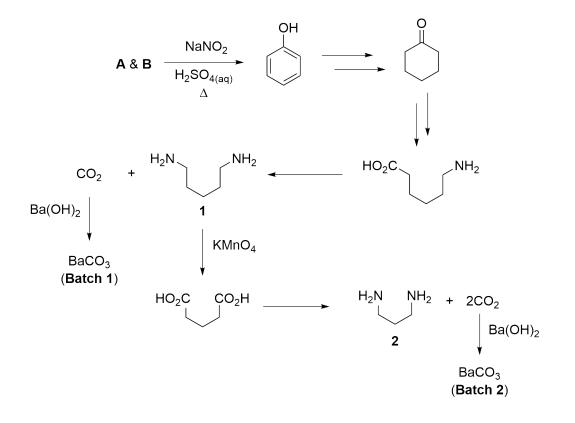
1.2 (4.0 pt)

Enantiomers
Diastereomers
Identical
Stereoisomers

1.3 (6.0 pt)

Н	I
J	

A Tale of a Reactive Intermediate


Arynes constitute a special class of reactive intermediates. The first experimental evidence for the structure of an aryne (benzyne) was demonstrated in 1953 via the elegant labeling experiments by John D. Roberts and coworkers.

In one such experiment, chlorobenzene, whose carbon at position 1 was labeled with radioactive ${}^{14}C$, was reacted with KNH₂ in liquid NH₃ to give nearly equal amounts of isotopic isomers **A** and **B** along with the inorganic salt **C**. This reaction proceeds via the formation of aryne intermediate **D**.

 $\begin{array}{c} & \overset{\star}{\overset{}} \text{CI} & \overset{\text{KNH}_2}{\overset{}} \\ & \overset{}{\overset{}} \text{NH}_{3(I)} \end{array} \quad \textbf{A} + \textbf{B} + \textbf{C}$

2.1 Draw the structure of **A**, **B** and **D**, and provide the formula of **C**. Indicate the 7.0pt position(s) of ¹⁴C-labeled carbon(s) with an asterisk (*) whenever applicable.

Analysis of the ¹⁴C-labeled product(s) was achieved via degradation experiments (the ¹⁴C-labeled carbons are not shown on the structures). Radioactivities of the intermediates and final products were examined.



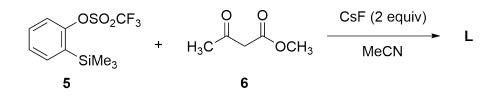
2.2 <u>**Tick**</u> the appropriate boxes on the answer sheet for the intermediates and prod- 9.0pt ucts that you expect to exhibit radioactivity.

With the aim of facilitating aryne formation, Kobayashi and co-workers developed a fluoride -induced aryne generation protocol. Using this method, benzene derivative **3** is reacted with furan (**4**) in the presence of CsF, resulting in the formation of **E**, **F**, and **G**.

- Combustion analysis of **E** revealed the following atom content: 75.8% carbon, 5.8% hydrogen, and 18.4% oxygen.
- **E** does not have a proton that is exchangeable with D_2O in ¹H-NMR spectroscopy.
- **F** is an ionic compound.

2.3 Determine the structures of **E**, **F**, and **G** (without stereochemical details). 8.0pt

In the absence of a nucleophile or a trapping agent, arynes can undergo [2+2]-type cyclodimerization or [2+2+2]-type cyclotrimerization reactions under suitable conditions. The aryne derivative that is obtained when **3** is treated with one equivalent of CsF in MeCN can give, in principle, four different dimerization and trimerization products (**H**–**K**).

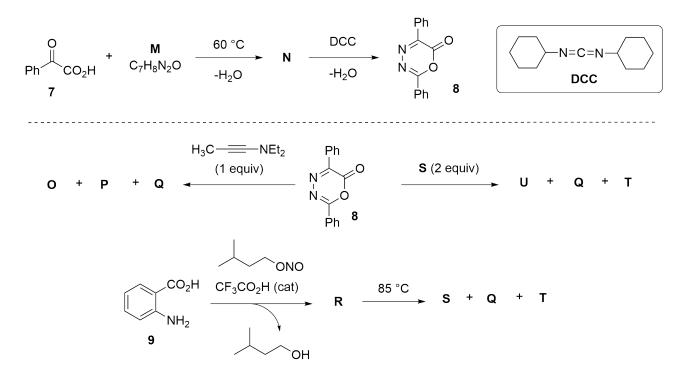

- **H** has two planes of symmetry.
- **I** is expected to exhibit 21 signals in its ¹³C-NMR spectrum.
- I and J both exhibit an *m/z* value of 318.1 in their mass spectra.

2.4 Determine the structures of **H**–**K**.

16pt

When **5** is reacted with β -ketoester **6** in the presence of 2 equivalents of CsF at 80 °C, **L** is obtained as the major product. The ¹H-NMR and ¹³C-NMR data for **L**, recorded in CDCl₃, are as follows:

- ¹H-NMR: δ 7.79 (dd, J = 7.6, 1.5 Hz, 1H), 7.47–7.33 (m, 2H), 7.25–7.20 (m, 1H), 3.91 (s, 2H), 3.66 (s, 3H), 2.56 (s, 3H) ppm.
- ¹³C-NMR: δ 201.3, 172.0, 137.1, 134.4, 132.8, 132.1, 130.1, 127.5, 51.9, 40.2, 28.8 ppm.



2.5	Determine the structure of L.		

- **2.6** In the reaction shown in task **2.5**, which of the statement(s) in the answer sheet 4.0pt describe(s) the function of CsF?
 - The pK_a values of HF and β -ketoester **6** in dimethyl sulfoxide (DMSO) are about 15 and 14, respectively.

Diazapyrone derivative **8** was shown to be a useful reactant for the construction of a variety of cyclic frameworks. Its preparation from phenylglyoxylic acid (**7**) and its use in two different reactions are described below.

- **Q** and **T** are gases under ambient conditions.
- **O** and **P** are constitutional isomers.
- **Q** does not have any signals in its IR spectrum.
- Heating 1 mol of **R** at 85 °C generates 1 mol of reactive intermediate **S**.
- Reaction of 8 with two equivalents of S gives U, Q, and T.

Note:

equiv = equivalent

cat = catalyst

2.7 <u>Determine</u> the structures of M–U.

28.0pt

A Tale of a Reactive Intermediate

2.1 (7.0 pt)

Α	В
С	D
[

2.2 (9.0 pt)

Considering only A :	Considering only B :
Compound 1	Compound 1
BaCO ₃ (Batch 1)	BaCO ₃ (Batch 1)
Compound 2	Compound 2
BaCO ₃ (Batch 2)	BaCO ₃ (Batch 2)

 $\textbf{2.3}\;(8.0\;{\rm pt})$

E	F
G	

2.4 (16.0 pt)

Н	I	
J	К	

2.5 (5.0 pt)

L

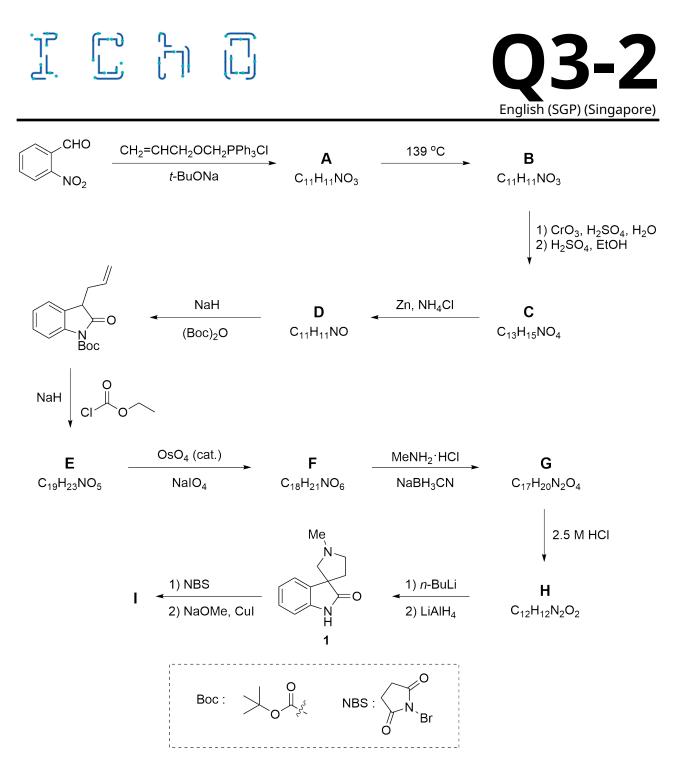
2.6 (4.0 pt)

F^- hydrolyzes the trifluoromethanesulfonate (O_3SCF_3) group of 5 .
F [–] attacks the –SiMe ₃ group of 5 .
F [−] acts as a base to deprotonate of 6 .
F [–] acts as a nucleophile and attacks the ester group of 6 .

2.7 (28.0 pt)

Μ	Ν
O and P	Q
	4
R	S
Т	U

(±)-Coerulescine

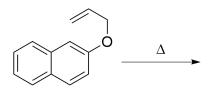

A spiro compound is typically an organic compound containing rings linked together by one common atom (spiroatom) carbon atom with bold in figure below. The spiro[pyrrolidin-3,3'-oxindole] ring system is a structural framework incorporated in several cytostatic alkaloids and unnatural compounds. Coerulescine (**1**) and horsfiline are the simplest prototype members of this subfamily that show diverse biological activity and can be synthesized by the route shown below.

Claisen rearrangement, which is a [3,3]-sigmatropic rearrangement, is a powerful carbon–carbon bond-forming reaction in which an allyl vinyl ether is converted thermally to an unsaturated carbonyl compound as shown in the Scheme below. When compound **A** is heated, it undergoes Claisen rearrangement to give carbonyl compound **B**.

For this entire task, your answers can be given without any stereochemical details.

3 R¹

8.0pt


3.1	 <u>Draw</u> the structures of A and B. A is an inseparable mixture of <i>cis/trans</i> isomers. B has IR absorption at 1726 cm⁻¹. 	8.0pt
3.2	Draw structures for C, D, E, and F. • D–F have a bicyclic structure.	16.0pt
3.3	<u>Choose</u> the correct order of steps for the transformation of F to G .	4.0pt

3.4 <u>Draw</u> structures for **G** and **H** (both spiro compounds).

3.5 <u>Draw</u> the structure of the intermediate produced by the treatment of **H** with 5.0pt *n*-BuLi in the step $\mathbf{H} \rightarrow \mathbf{coerulescine}$ (1).

Coerulescine (1), on treatment with *N*-bromosuccinimide (NBS), gives a bromo derivative, which upon heating with sodium methoxide in the presence of cuprous iodide gives **horsfiline (I)** in 60% yield.

- **3.6** <u>**Choose**</u> the correct structure for compound **I** that is consistent with the following selected ¹H-NMR data: δ 7.05 (d, *J* = 1.4 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.72 (dd, *J* = 8.0, 1.4 Hz, 1H) ppm.
- **3.7** When the allyl ether of 2 naphthol is heated, a sigmatropic rearrangement is 5.0pt initiated. **Write** the structure of the major product isolated from this reaction.

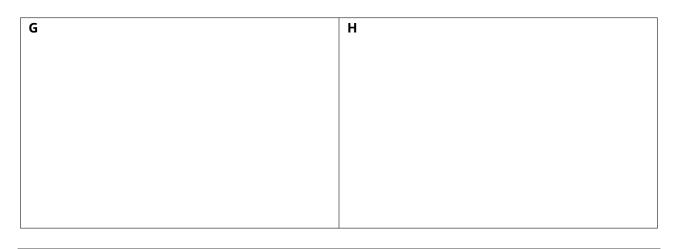
(±)-Coerulescine

3.1 (8.0 pt)

A	В

3.2 (16.0 pt)

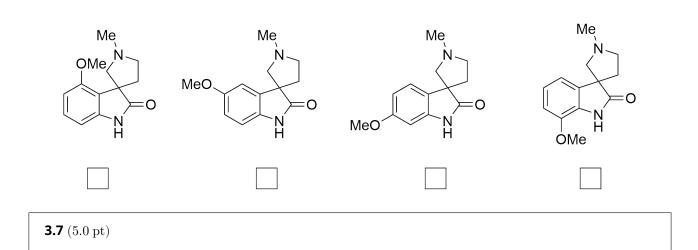
C	D
E	F
	r (



3.3 (4.0 pt)

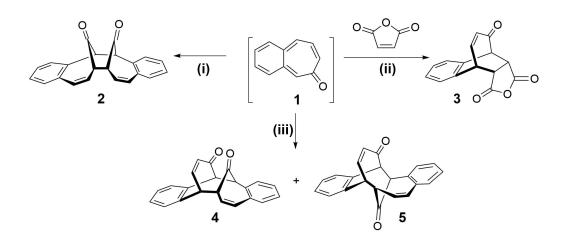
Imine formation, then reduction, then amidation Amidation, then imine formation, then reduction Reduction, then amidation, then imine formation

3.4 (8.0 pt)



3.5 (5.0 pt)

3.6 (5.0 pt)

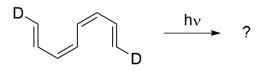


Symmetry Does Matter!

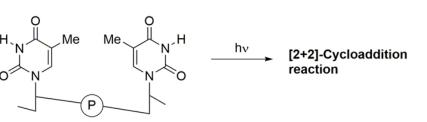
There are numerous reactions in organic chemistry that proceed through cyclic transition states and these are classified as pericyclic reactions. Woodward–Hoffmann rules, developed by Robert B. Woodward and Roald Hoffmann, are used to rationalize stereochemical aspects and the activation energy of pericyclic reactions.

Woodward–Hoffmann rules				
	Electrocyclic reactions			additions
Number of electrons	Thermal (Δ)	Photochemical (hv)	Thermal (Δ)	Photochemical (<i>hv</i>)
4 <i>n</i> (n = 1, 2,)	Conrotatory (con)	Disrotatory	Disfavored	Favored
4 <i>n</i> +2 (n = 1, 2,)	Disrotatory (dis)	Conrotatory	Favored	Disfavored

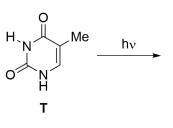
4.1 <u>Fill</u> in the table for reactions (i)–(iii) or products 2–5: 12.0pt


There are three possible isomers of benzotropone. Although two of the benzotropone isomers were isolated, 3,4-benzotropone (**1**) has not been isolated. Its instability is attributed to the *o*-quinoidal structure of **1** because it has no sextet (6) electron system in the benzene ring.

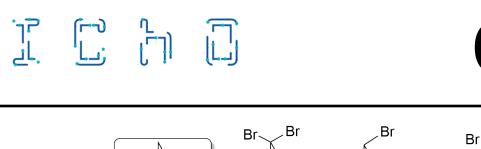
4.2 Draw the structures of stable benzotropone isomers **A** (with 6 signals in its ¹³C- 6.0pt NMR) and **B** (with 11 signals in its ¹³C-NMR).



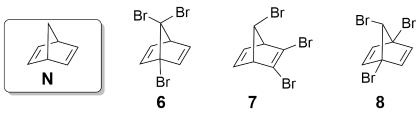
4.3 When the following tetraene is reacted under photochemical conditions, 6.0pt symmetry-allowed product(s) of three different ring sizes can form according to the Woodward–Hoffmann rules. **Tick** the correct answer in each row.



Prof. Dr. Aziz Sancar

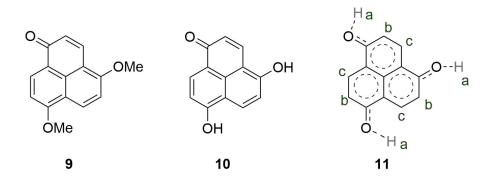

The Nobel Prize in Chemistry 2015 was awarded jointly to the Turkish scientist Aziz Sancar, Swedish scientist Tomas Lindahl, and American scientist Paul Modrich for their "mechanistic studies of DNA repair". Pyrimidine bases found in DNA may undergo a photochemical **[2+2]-cycloaddition reaction** (see above figure) with UV light that reaches a person's skin, causing damage to DNA, which may ultimately lead to skin cancer. The research by Professor Aziz Sancar focused on the DNA repair mechanism for this type of damage.

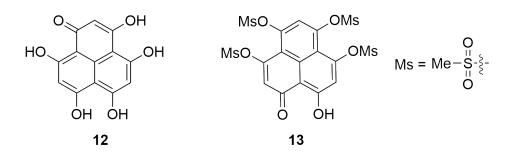
Thymine is one of the nucleobases that can undergo such a photochemical reaction with UV light. Let us assume that we have a solution of free thymine that was subjected to UV irradiation.



4.4 Considering stereochemistry, <u>draw</u> the structures of <u>all possible products</u> of 16.0pt this reaction between two free thymine molecules. <u>Circle</u> the compound(s) which is/are chiral. Drawing only one enantiomer of an enantiomeric pair is sufficient. Please note that only C=C bonds participate in this reaction.

A broad range of halogenated derivatives of norbornadiene (**N**) are known in the literature. Tribromonorbornadiene ($C_7H_5Br_3$) has six achiral (meso) isomers. Three of these isomers (**6**, **7**, and **8**) are given below.





- 4.5 How many signals do you expect from the ¹³C-NMR spectra of isomers 6, 7, and 9.0pt
 8? <u>Fill in</u> the following boxes.
- **4.6 <u>Draw</u>** structures of the remaining achiral (meso) tribromo-norbornadiene 9.0pt $(C_7H_5Br_3)$ achiral (meso) isomers (**C**, **D**, and **E**) in addition to **6–8** over the given figures in the boxes.

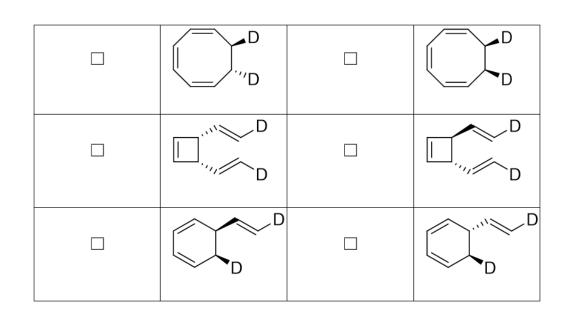
The NMR spectrum of ether **9** is complex. Two MeO– groups are different, as are all the hydrogen atoms on the rings. However, diphenol **10** has a very simple NMR spectrum and there are only three types of protons (marked as a, b, and c). A reasonable average structure responsible for all resonance structures and its symmetry is shown as **11**.

4.7 How many signals do you expect from the ¹³C- and ¹H-NMR spectra of **12** and 8.0pt **13**?

Symmetry Does Matter!

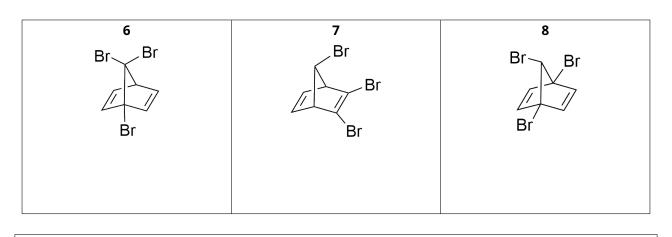
4.1 (12.0 pt)

Reaction	Product	[? + ?] cycloaddition	Δ or $h\nu$
i	2		
ii	3		
iii	4		
	5		

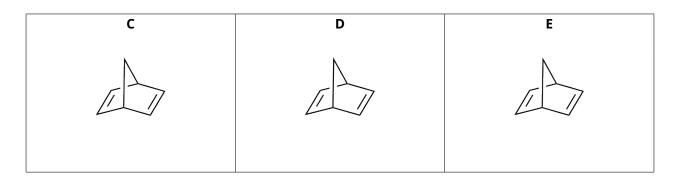

4.2 (6.0 pt)

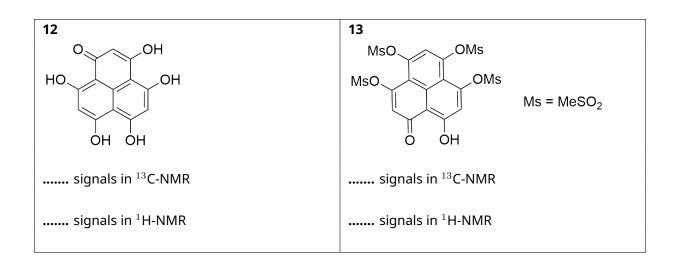
Α	В	

4.3 (6.0 pt)



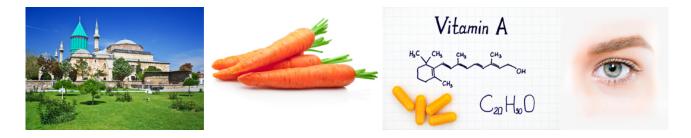
4.4 (16.0 pt)

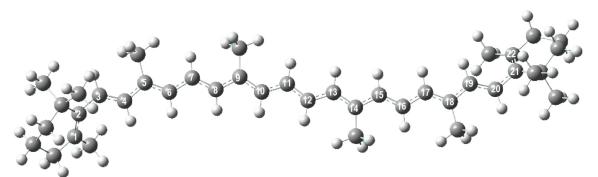




4.5 (9.0 pt)

$\textbf{4.6}\;(9.0\;{\rm pt})$




Konya, Carrot, Beta-Carotene, Vitamin-A, Immune System, Vision

Mevlana (Rumi) was a great mystic and Sufi poet who lived out his days in Konya in the 13th century. The indirect relevance of Konya to chemistry is that the city provides 65% of the country's carrot production, from which one of the essential vitamins (vitamin A) is obtained.

Carrot is an important source of β -carotene, which gives the vegetable its orange colour. This molecule is a red-orange pigment naturally found in plants and fruits and is a provitamin A carotenoid. It is converted to vitamin A, which is essential for normal growth and development, the immune system, and vision function.

β-Carotene has an extended polyene chain of 22 carbon atoms. It is a conjugated π-system, having alternating single and double bonds. Its experimental maximum absorption wavelength (λ_{max}) is 455 nm. We assume that all the bonds between C₁ and C₂₂ are conjugated bonds. There are 22 π-electrons in the molecule (Figure 1).

Figure 1. Ball and stick representation of the structure of β -carotene. The gray and white spheres represent the carbon and hydrogen atoms, respectively. The numbered carbon atoms belong to the linear conjugated π -segment of the molecule.

To a crude approximation, the electrons in the C-2Pz orbitals, which are perpendicular to the molecular plane, are assumed to move along the entire molecule, without interacting with each other. They are like independent particles confined in a molecule moving along the x-axis in one dimension. These characteristics of π -electrons make them eligible for being treated by the simplest model called the **particle in one-dimensional box** model.

The wave function and the energies of the quantized levels for an electron moving in a one-dimensional box with infinite potential walls are given as follows:

$$\Psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$$
 (Eq.1)

where n is the quantum number, n = 1,2,3,4,.... ∞ , and L is the length of the box.

$$E_n = \frac{n^2 h^2}{8m_e L^2}$$
 (Eq.2)

In two dimensions, within the framework of independent particle approximation, the wavefunction is expressed as a product of one-dimensional wavefunctions, and the energy is expressed as a sum of one-dimensional energies. The energy levels of the two dimensional rectangular box is given as follows:

$$E_{n_x,n_y} = \left[\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_u^2}\right] \left\{\frac{h^2}{8m_e}\right\}$$
 (Eq.3)

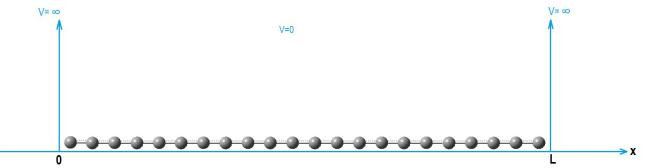
where n_x , n_y are the quantum numbers and they are positive integers. L_x , L_y are the dimensions of the box in the 2D model. They are positive numbers.

5.1 Which two sentences given below are correct? **<u>Tick</u>** only one answer which in- 13.0pt cludes the correct sentences in your answer sheet.

The β -carotene molecule is orange in colour because:

i) it absorbs in the visible light region of the electromagnetic spectrum.

ii) HOMO \rightarrow LUMO transition occurs by absorption of IR photon.


iii) the spacing between the 22nd and the 23rd energy levels is equal to the energy of the IR photon at the orange wavelength.

iv) it absorbs green/blue light and it transmits red/yellow colour.

v) it absorbs in the UV-Vis region since the molecule has no net dipole moment.

Although it is highly unrealistic, let us assume that the conjugated segment of the molecule is linear and can be modelled as the particle in a one-dimensional box as shown in figure 2. In this case, the length of the box can be approximated as $L = 1.40 \times n_C$ (in Å), where n_C is the number of carbon atoms in the conjugated segment.

Use this information to answer the questions 5.2-5.6.

Figure 2. Schematic representation of the conjugated line segment made up carbon atoms of β -carotene in a one-dimensional box of length L.

5.2	<u>Calculate</u> the energies (in J) of the lowest two energy levels	13.0pt
5.3	<u>Draw</u> the wavefunctions of the two lowest energy levels with proper labelling of the x-axis.	15.0pt
5.4	<u>Sketch</u> the energy level diagram up to n = 4, showing clearly the relative spac- ing.	8.0pt
5.5	What is the total π -energy (in J) of the molecule?	12.0pt
5.6	<u>Calculate</u> the wavelength (in nm) at which the transition between the highest occupied and lowest unoccupied energy levels occurs.	10.0pt

Use the particle in a two-dimensional box model to answer questions 5.7–5.8.

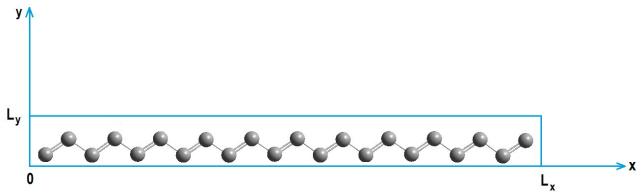


Figure 3. Schematic representation of the conjugated carbon atoms of β -carotene in a two-dimensional box.

Assume that the conjugated segment is made up of carbon atoms that are all-*trans* to each other. The motion of the π -electrons is studied in the two-dimensional rectangular box with the dimensions L_x = 26.0 Å, L_y = 3.0 Å (Figure 3).

5.7 <u>**Calculate**</u> the energies (in J) of the highest occupied and the lowest unoccupied 17.0pt energy levels and the wavelength (in nm) at which the transition between these energy levels occurs.

5.8 What should the L_x value (in Å) be in order for the molecule to absorb light at the experimental λ_{max} = 455 nm if L_y is kept constant at 3.0 Å. (You may assume that the quantum numbers for HOMO and LUMO are the same as in the question 5.7.)

Konya, Carrot, Beta-Carotene, Vitamin-A, Immune System, Vision

5.1 (13.0 pt)

□ e) ii and iii □ f) ii and iv □ g) ii and v □ h) iii and iv	🗆 a) i and ii	🗆 b) i and iii	🗆 c) i and iv	□ d) i and v
	🗆 e) ii and iii	f) ii and iv	🗆 🛛 g) ii and v	h) iii and iv
$ \Box \mathbf{j} \rangle$ iii and v $\Box \mathbf{k} \rangle$ iv and v	🗆 🛭 j) iii and v	\Box k) iv and v		

5.2 (13.0 pt)

Calculations:	

5.3 (15.0 pt)

$\textbf{5.4}\;(8.0\;{\rm pt})$

 $\textbf{5.5}\;(12.0\;{\rm pt})$

 $\textbf{5.6}\;(10.0\;{\rm pt})$

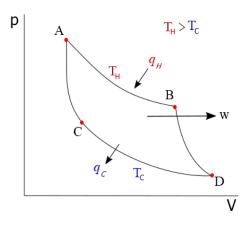
Calculations:

 $\textbf{5.7}\;(17.0\; \mathrm{pt})$

Calculations:

 $\textbf{5.8}\;(12.0\; \mathrm{pt})$

Thermodynamics through an Interstellar Journey


Part 1

In a hypothetical universe, an unknown amount of diborane participates in the following reaction:

 $B_2H_6(g) + 6 H_2O(I) \rightarrow 2 H_3BO_3(s) + 6 H_2(g)$

You may assume that in this hypothetical universe, the $H_3BO_3(s)$ obtained from this reaction was completely sublimed at 300 K. The energy required for the sublimation was obtained through the work released by **one cycle** of an ideal heat engine in which one mole of monoatomic ideal gas flows through the cycle described in the pressure (p) – volume (V) diagram below:

- A \rightarrow B; isothermal reversible expansion receiving 250 J by heat transfer (q_H) at a temperature of 1000 K (T_H) from a hot source.
- $B \rightarrow D$; reversible adiabatic expansion.
- D \rightarrow C; isothermal reversible compression at a temperature of 300 K (T_C) releasing some amount of heat (q_C) to a cold sink.
- $C \rightarrow A$; reversible adiabatic compression.

After the heat transfers, the remaining energy is released as work (w). Also, q_H and q_C are related to T_C and T_H as follows:

$$\frac{|q_H|}{|q_C|} = \frac{T_H}{T_C}$$

The efficiency of the cycle can be found by work released by cycle (w) divided by heat absorbed by cycle (q_H) .

You are provided with the change in enthalpies of the following reactions at 300 K.

(1) $B_2H_6(g)$ + 6 $Cl_2(g) \rightarrow 2 BCl_3(g)$ + 6 HCl(g)	∆ _r H(1)= -1326 kJ mol −1
(2) $BCI_3(g) + 3 H_2O(I) \rightarrow H_3BO_3(g) + 3 HCI(g)$	⊿ _r H(2)= -112.5 kJ mol −1
(3) $B_2H_6(g)$ + 6 $H_2O(I) \rightarrow 2 H_3BO_3(s)$ + 6 $H_2(g)$	∆ _r H(3)= -493.4 kJ mol −1
(4) $\frac{1}{2}$ H ₂ (g) + $\frac{1}{2}$ Cl ₂ (g) \rightarrow HCl(g)	$\mathbf{\Delta}_r$ H(4)= -92.3 kJ mol $^{-1}$

6.1	<u>Calculate</u> the molar enthalpy of sublimation (in kJ mol ^{-1}) for H ₃ BO ₃ at 300 K.	5.0pt
6.2	<u>Calculate</u> the Δ_r U (internal energy) in terms of kJ mol ⁻¹ at 300 K for the reactions (2) and (4) given above (you may assume ideal gas behaviour for each gaseous species in each reaction).	12.0pt

- **6.3** Calculate the amount of overall work produced by a heat engine (|w|) in terms 6.0pt of J and the amount of overall heat released to the cold sink ($|q_C|$) in terms of J.
- **6.4 <u>Calculate</u> the efficiency of the heat engine described above.**
- 3.0pt
- **6.5** Calculate the entropy change (Δ S) for A \rightarrow B and D \rightarrow C processes in the heat 6.0pt engine in terms of J K⁻¹.
- **6.6 Calculate** the Gibbs energy change (Δ G) in terms of J for A \rightarrow B and D \rightarrow C pro-6.0pt cesses in the heat engine.
- **6.7 <u>Calculate</u>** the ratio of pressure at point A to the pressure at point B in the cycle 5.0pt (standard pressure: 1 bar).
- **6.8** <u>**Calculate**</u> the amount of $H_2(g)$ (in moles) produced according to the reaction 3.0pt given at the beginning of the task for one cycle of the engine.

Part 2

Interstellar journeys can be done by using diborane as rocket fuel. Combustion of diborane is shown below:

 B_2H_6 (g) + 3O₂ (g) $\rightarrow B_2O_3$ (s) + 3H₂O (g)

The combustion of diborane is performed in a 100 L closed container at different temperatures and the equilibrium conditions were recorded.

	8930 K	9005 K
B ₂ H ₆ (g)	0.38 mol	0.49 mol
H ₂ O(g)	0.20 mol	0.20 mol

The partial pressure of O_2 (g) was stabilized to 1 bar and kept constant at all conditions. Assume that in this hypothetical universe; $\Delta_r S^\circ$ and $\Delta_r H^\circ$ are temperature independent, the standard molar entropy (S°) of $B_2O_3(s)$ does not change with pressure, all the gas species behave as an ideal gas, and all species remain in the same phase, without any further decomposition before or after reaction, at all temperatures then:

6.9	<u>Calculate</u> K_p (pressure based equilibrium constant) at 8930 K and 9005 K.	8.0pt
6.10	<u>Calculate</u> Δ_r G° of the reaction in terms of kJ mol ⁻¹ at 8930 K and 9005 K. (If you failed to find K _p , please use K _p (8930 K) = 2, K _p (9005 K) = 0.5)	6.0pt
6.11	<u>Calculate</u> Δ _r G° (in terms of kJ mol ⁻¹), ΔrH° (in terms of kJ mol ⁻¹), and Δ _r S° ((in terms of J mol ⁻¹ K ⁻¹) of the combustion reaction at 298 K. (If you failed to find K_p , please use K_p (8930 K) = 2, K_p (9005 K) = 0.5)	6.0pt
6.12	<u>Tick</u> the correct answer in the table by determining whether combustion reac- tions are favored or not at given T below under standard pressure (1 bar).	8.0pt
6.13	<u>Calculate</u> the Δ _f H (kJ mol ⁻¹) and S°(kJ mol ⁻¹ K ⁻¹) of H ₂ O(g) using the values given in the table below. (Δ _f H = enthalpy of formation, S° = standard entropy) (If you fail to find Δ _r H° and Δ _r S° of the combustion, please use ΔH° = 1000 kJ mol-1, ΔS°= 150 J K ⁻¹ mol ⁻¹)	6.0pt

	Δ _f H (298 K)	S° (298 K)
B_2H_6 (g)	36.40 kJ mol ⁻¹	0.23 kJ mol ⁻¹ K ⁻¹
O ₂ (g)	0.00 kJ mol ⁻¹	0.16 kJ mol ⁻¹ K ⁻¹
B_2O_3 (s)	–1273 kJ mol ^{–1}	0.05 kJ mol $^{-1}$ K $^{-1}$

Thermodynamics through an Interstellar Journey

6.1 (5.0 pt)

Show your calculations:

6.2 (12.0 pt)

Show your calculations:

6.3 (6.0 pt)

 $\textbf{6.4}~(3.0~{\rm pt})$

Show your calculations:

6.5 (6.0 pt)

Show your calculations:

6.6 (6.0 pt)

6.7 (5.0 pt)

Show your calculations:

6.8 (3.0 pt)

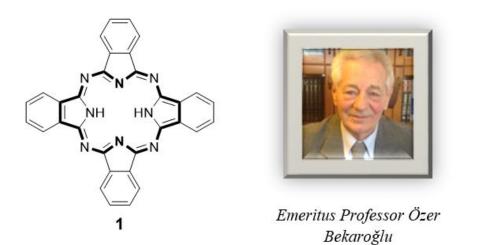
6.9 (8.0 pt)

6.10 (6.0 pt)

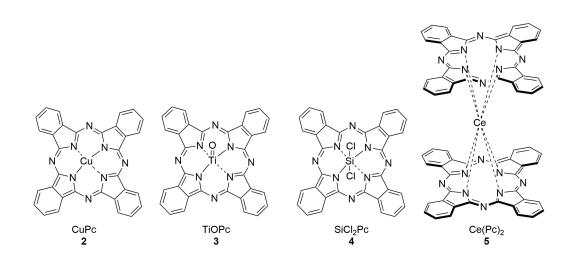
Show your calculations:

6.11 (6.0 pt)

6.12 (8.0 pt)


	favored	Unfavored
298 K		
8930 K		
9005 K		
9100 K		

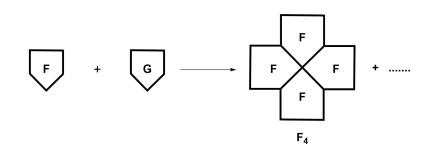
6.13 (6.0 pt)


Phthalocyanines

The term phthalocyanine (Pc) takes its origin from the Greek "naphtha", which means rock oil, and "cyanine", which means dark blue. Turkish scientist Özer Bekaroğlu can be regarded as the pioneer of Pc chemistry in Turkey.

Metal-free phthalocyanine (1, $\rm H_2Pc)$ is a large planar macrocyclic compound with the formula $(C_8H_4N_2)_4H_2.$

7.1 How many π -electrons are there in the bold region of the H₂Pc molecule in compound **1** shown above?



Pcs containing one or two metal ions are called metallo-phthalocyanines (MPcs) and they exhibit different geometries as shown above.

- **7.2 Complete** the table in your answer sheet by determining the coordination num- 8.0pt ber of the central ions in **2–5**.
- **7.3 Complete** the table in your answer sheet by determining the oxidation number 6.0pt of each metal (Cu, Ti, and Ce) in **2**, **3**, and **5**.
- **7.4 Complete** the table in your answer sheet by determining the geometry of com- 8.0pt pounds **2–5**.
- **7.5 Complete** the table in your answer sheet by determining the magnetic property 8.0pt of compounds **2–5**.
 - Use the letter "p" for paramagnetic property and letter "d" for a diamagnetic property.
- **7.6** <u>Write</u> the ground-state electron configuration of the silicon (Si) ion in compound **4**, and <u>write</u> all the quantum numbers for the 2p electrons in its ground state.

Metal-free phthalocyanine (**1**, H_2Pc) is commonly formed through the cyclotetramerization of phthalonitriles. On the other hand, Pcs having different substituents are asymmetric, which can be prepared by the statistical cyclization of two different phthalonitriles. This method has no selectivity and the product is a mixture of all possible isomers.

- **Draw** all possible products that may be formed in the statistical cyclization 19.0pt method by using F and G. If there are any stereoisomers you can label them as *cis* or *trans*-.
 - **F** and **G** represent two different symmetrical phthalonitriles.
 - One of the products is \mathbf{F}_4 as given below.
 - Draw other products similar to the format in **F**₄.

Pcs are used as photosensitizers in the photodynamic therapy (PDT) of cancer due to their strong ab-

sorption in the visible spectrum and high molar absorption coefficients. PDT consists of three essential components: **photosensitizer**, light, and oxygen. None of these is individually toxic, but together they initiate a photochemical reaction resulting in the generation of cytotoxic singlet oxygen (${}^{1}O_{2}$) that can destroy cancer cells.

(multiplicity) $^1 {\bf 0}_2$

- The multiplicity of an energy level is defined as 2S+1
- If the two spins are parallel ($\uparrow\uparrow$), S = 1, and if the two spins are antiparallel ($\uparrow\downarrow$), S = 0.
- **Draw** the molecule orbital (MO) diagram of the lowest energy singlet state of 12.0pt dioxygen (¹O₂) and calculate the bond order.
 There are no unpaired electrons in that state!
- **7.9** If the wavelength of the light needed to excite triplet oxygen into singlet oxygen 6.0pt is 1270 nm, <u>calculate</u> the energy (in kJ per mole) needed for this transition to occur.

Phthalocyanines

7.1 (4.0 pt)

The number of π -electrons in a H₂Pc molecule:

7.2 (8.0 pt)

Central ion	Copper ion	Titanium ion	Silicon ion	Cerium ion
Coordination number				

7.3 (6.0 pt)

Metal in compounds	2	3	5
Oxidation number			

7.4 (8.0 pt)

Geometry	Compound
Octahedral	
Square prism (square prismatic)	
Square pyramidal	
Square planar	

7.5 (8.0 pt)

Compound	Magnetic property
2	
3	
4	
5	

7.6 (14.0 pt)

Electron configuration:				
	n	1	$oldsymbol{m}_1$	m _s
Quantum numbers for 2p electrons:				
-				
-				

7.7 (19.0 pt)

Products:

 $\textbf{7.8}\;(12.0\;{\rm pt})$

MO diagram:	
Mo alagram.	
Dond ordory	
Bond order:	

7.9 (6.0 pt)

Show your calculations:

Energy = kJ/mol

Boron Compounds and Hydrogen Storage

Sodium borohydride (NaBH₄) and ammonia borane (BNH₆) are the most studied chemical hydrogen storage materials. In this question, you will explore the chemistry of boron and the use of boron compounds as hydrogen storage materials.

Borax (Na₂B₄O₇·nH₂O) is a boron mineral that is produced by ETI Mining Company in Turkey. NaBH₄ can be synthesized by the reduction of anhydrous borax with metallic sodium under high-pressure hydrogen gas in the presence of silicon dioxide (silica) at 700°C, namely the Bayer process. In this process, all hydrogen is stored in NaBH₄. On the other hand, it has been shown that ammonia borane (BNH₆) can be synthesized by the reaction of NaBH₄ and ammonium sulfate in dry tetrahydrofuran (THF) at 40°C (**Hint:** BNH₆ synthesis must be conducted in a well-ventilated fume-hood because a flammable gas is generated as one of the by-products). While NaBH₄ is an ionic compound, ammonia borane is a Lewis acid-base adduct.

8.1	$\underline{\textbf{Write}}$ a balanced chemical equation for the synthesis of \textbf{NaBH}_4 from anhydrous borax.	3.0pt
8.2	$\underline{\textbf{Write}}$ a balanced chemical equation for the synthesis of ammonia borane from $\text{NaBH}_4.$	3.0pt
8.3	<u>Draw</u> the molecular geometries of the BH_4^- ion and BNH_6 molecule.	4.0pt
8.4	<u>Calculate</u> the hydrogen content of NaBH $_4$ and BNH $_6$ as a percentage by mass (wt%).	4.0pt

The hydrogen stored in both compounds can be released via solvolysis reactions in the presence of a suitable catalyst at room temperature. Upon the hydrolysis reactions, 4 and 3 moles of H_2 gas are

released from the hydrolysis of 1 mole of $NaBH_4$ and BNH_6 , respectively, along with an metaborate anion that contains B-O bonds.

8.5 <u>Write</u> the balanced chemical equations for the hydrolysis of NaBH₄ and BNH₆. 4.0pt

One of the simplest stable diboron is diboron trioxide (B_2O_3) and higher borates such as $B_3O_6^{3-}$ cyclic structures that contain B-O-bonds can be formed. Since B_2O_3 is an acidic compound, it is easily reacted with water to produce boric acid (H_3BO_3). On the other hand, the high temperature and high-pressure reaction of B_2O_3 with ammonia yields the two-dimensional boron nitride, which consists of planar graphite-like sheets of alternating B and N atoms.

- **8.6** <u>Write</u> the balanced chemical equations for the synthesis of boric acid and boron 4.0pt nitride.
- **8.7 Draw** the molecular structures of the $B_3O_6^{3-}$ ion, boric acid, and a single twodimensional boron nitride sheet. **Hint:** at least 10 B atoms must be shown in your boron nitride structure.

Furthermore, B-H compounds, called boranes, are an important class of boron compounds. The simplest stable borane is diborane (B_2H_6) and many of the higher boranes can be prepared by the pyrolysis of diborane. Diborane can be synthesized via metathesis of a boron halide and a hydride source.

- **8.8** <u>Write</u> a balanced chemical equation for the synthesis of diborane from the reaction of BF_3 and $LiBH_4$. **Hint:** both products are boron compounds.
- **8.9 Draw** the molecular geometry of the diborane molecule. **Hint:** there is no B-B 2.0pt bond in the molecule.

 BH_3 (borane) is an unstable and highly reactive molecule. Therefore, it is not possible to isolate it as BH_3 under ordinary conditions. However, it can be stabilized via its reaction with carbon monoxide to yield borane carbonyl (BH_3CO) compound, which is an adduct of borane. The preparation of BH_3CO plays an important role in exploring the chemistry of boranes as it indicates the likely existence of the borane molecule.

- 8.10 Sketch the Lewis dot structure of BH₃CO molecule, showing the formal charges. 3.0pt
- **8.11** Which of the statements given in the answer sheet is observed in the C–O bond 2.0pt of a CO molecule upon the bond formation between BH₃ and CO ? <u>Tick</u> the correct box.

Borazine consists of single and double bonded cyclic B–N units and hydrogen atoms attached to these atoms with the molecular formula $B_3N_3H_6$ and is isostructural to benzene. Borazine can be synthesized by using a two-step procedure including the synthesis of symmetrically trisubstituted chlorine derivatives of borazine ($B_3N_3H_3Cl_3$) from the reaction of ammonium chloride and boron trichloride, and then reduction of $B_3N_3H_3Cl_3$ with LiBH₄ in THF.

- **8.12** Write the balanced chemical equations for the two-step synthesis of borazine 4.0pt starting from ammonium chloride in THF (tetrahydrofuran). **Hint:** THF stabilizes one of the products by forming a Lewis acid-base adduct.
- **8.13 Draw** the molecular structures of borazine and its symmetrically trisubstituted 4.0pt chlorine derivative.

Catalysts are substances that accelerate the rate of reactions by allowing them to proceed via a lower energy pathway. The catalytic activity of the catalysts is generally determined by the turnover frequency (TOF), which is calculated by dividing the molar amount of the product to the mole of active catalyst and the time (TOF = mole product/(mole catalyst x time)). A typical hydrolysis of BNH₆ was carried out in 10.0 mL of water by using 100.0 mM BNH₆ and 5.0 mg of CuPt/C catalyst (CuPt alloy nanoparticles supported on carbon black containing 8.2 wt% Pt atom). 67.25 mL of hydrogen gas was generated in 5 minutes.

8.14 Assuming that the catalytic reaction is performed under standard conditions (1 atm and 273.15 K), <u>calculate</u> the TOF (min⁻¹) of the CuPt/C catalyst in terms of only Pt atoms in the hydrolysis of BNH₆ by considering the volume of the hydrogen gas generated.

As a result of detailed crystal analysis of a synthesized $Cu_x Pt_y$ alloy nanoparticle (the subscripts indicate molar percentages of the atoms in the alloy structure), it was determined that the fcc unit cell was formed by Pt atoms and the Pt atoms on the face of the fcc unit cell are supposed to be replaced with Cu atoms to form $Cu_x Pt_y$ displacement alloy nanoparticles. According to this information, answer the following questions.

- **8.15 Determine** the composition of the alloy nanoparticles by finding x and y in the 2.0pt $Cu_x Pt_y$ alloy composition.
- **8.16** Sketch the shape of the described crystal unit cell of $Cu_x Pt_y$ alloy nanoparticles 2.0pt by showing the placement of the atoms in the unit cell.
- **8.17** Another alloy has a Cu_2Pt_1 composition. You may assume that this alloy has 4.0pt an fcc unit cell with an edge length of 380 pm, but the Cu and Pt atoms are randomly distributed in the atomic positions. **Calculate** the density of this alloy in g/cm³.

Boron Compounds and Hydrogen Storage

8.1 (3.0 pt)

8.2 (3.0 pt)

8.3 (4.0 pt)

 $\textbf{8.4}\;(4.0\; \mathrm{pt})$

 $\textbf{8.5}\;(4.0\; \mathrm{pt})$

8.6 (4.0 pt)

8.7 (6.0 pt)

${\sf B}_3{\sf O}_6^{3-}$	Boric acid	Boron nitride

8.8 (3.0 pt)

8.9 (2.0 pt)

8.10 (3.0 pt)

 $\textbf{8.11} \; (2.0 \; \mathrm{pt})$

 $\hfill\square$ It gets longer because there will be $\pi\mbox{-}back$ donation from BH_3 to CO.

 \Box It gets longer because CO donates π -bonding electrons to BH₃

 \Box No or slight change on it because CO donates its mainly non-bonding electrons to BH_3

 \Box It gets shorter because CO donates π^* anti-bonding electrons to BH₃.

 $\textbf{8.12}~(4.0~{\rm pt})$

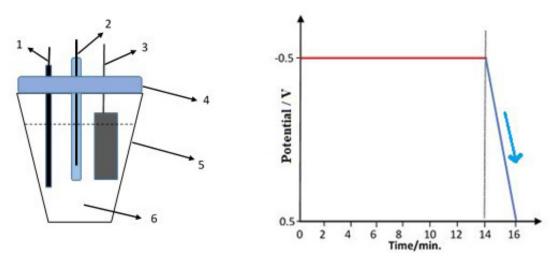
8.13 (4.0 pt)

 $\textbf{8.14} \; (4.0 \; \mathrm{pt})$

 $\textbf{8.15}\;(2.0\;{\rm pt})$

8.16 (2.0 pt)

8.17 (4.0 pt)


Quantification of Heavy Metal Ions

For the quantitative analysis of heavy metal ions in a factory's wastewater pool, the following steps have been applied by an analyzer at 298 K:

Step 1) 10-mL samples were each obtained from five different regions in a wastewater pool, mixed in a 100-mL beaker, and then stirred for 5 minutes using a magnetic stirrer.

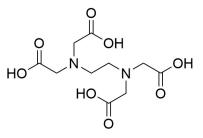
Step 2) A 10-mL of sample solution was taken from the 100-mL beaker and 142 mg of Na_2SO_4 was added with stirring, followed by transferring the solution to a three-electrode cell as seen in Figure 1a. In this electrochemical cell, Pt wire, Ag/AgCl (3 M KCl), and Pt foil served as the working, reference, and counter electrodes, respectively.

Step 3) These electrodes were connected to a potentiostat and a constant potential of –0.50 V vs. Ag/AgCl was applied for 14 minutes as seen in Figure 1b (horizontal line). It is assumed that 14 minutes is sufficient for the expected electrochemical reactions to proceed to completion.

Figure 1. a) Electrochemical cell design; 1) Working electrode (Pt wire), 2) reference electrode (Ag/AgCl, 3M KCl), 3) counter electrode (Pt foil), 4) cell tap, 5) electrochemical cell, 6) 10-mL of sample solution. **b)** Potential change of working electrode as a function of time. y-axis: potential/V vs Ag/AgCl, x-axis: time/min.

Step 4) The electrodes were rinsed with distilled water, placed into another electrochemical cell containing 10-mL of 0.1 M H_2SO_4 solution, and potential was scanned between –0.50 and +0.50 V as seen in Figure 1b (downward sloping line in 2 min.). The current vs. potential data for this step are presented in Figure 2a, which is like an excellent view of *Mount Ararat (Ağrı Dağı*), the highest mountain in Turkey (Figure 2b).

Figure 2. a) Potential scan of the working electrode as a function of current in 0.1 M H_2SO_4 solution after keeping a constant potential of –0.50 V in 10-mL of wastewater sample as seen in Figure 1b (horizontal line). y-axis: current/ μ A, x-axis: potential/V vs Ag/AgCl, b) A view of Great and Little Ararat peaks.


Step 5) Another 10-mL of the sample solution prepared in *step 1* was taken and *steps 2 and 3* were performed. The electrodes were rinsed with distilled water and placed into 10-mL of 0.1 M H_2SO_4 solution. Then the potential of the working electrode was kept constant at +0.05 V for 14 min. It is assumed that 14 minutes is sufficient for the expected electrochemical reactions to proceed to completion.

Step 6) After *step 5* was performed, the solution in the electrochemical cell was placed in a suitable oven to evaporate at 150 °C until a dry solid was obtained.

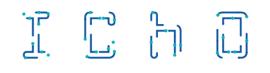
Step 7) 5-mL of ethylenediaminetetraacetic acid (EDTA, H_4Y) (Figure 3) solution was added to the solid obtained in step 6 and it was shaken to dissolve. It is known that 1-mL of the EDTA solution reacts with 3.85 mg/mL BaCO₃. Then, the pH of the solution was adjusted to 10.0. The excess EDTA was titrated with standard 0.0010 M Ni(NO₃)₂ solution and it was observed that 95.60 mL of Ni(NO₃)₂ solution was required to reach the endpoint.

Figure 3. Chemical structure of EDTA (H_4 Y).

- In a solution of water saturated with H_2S , the concentration of H_2S is 0.1 M.
- $K_{sp}(NiS) = 4.0 \times 10^{-20}$; $K_{sp}(CuS) = 1.0 \times 10^{-36}$
- $K_{a1}(H_2S) = 9.6 \times 10^{-8}$; $K_{a2}(H_2S) = 1.3 \times 10^{-14}$

Reaction	E°/V (at 298 K)
$2H_2O(I)+2e^- \rightarrow H_2(g)+2OH^-$ (aq)	-0.83
Ni ²⁺ (aq)+2 e^- → Ni(s)	-0.24
$2H^+$ (aq)+ $2e^- \rightarrow H_2$ (g)	0.00
Cu^{2+} (aq)+2 $e^- \rightarrow Cu(s)$	+0.34
Ag ⁺ (aq)+e [−] → Ag(s)	+0.80
O_2 (g)+4H ⁺ (aq)+4e ⁻ $ ightarrow$ 2H $_2O(I)$	+1.23

9.1 Which of the following can be considered for peak 1 and peak 2 in Figure 2a, 5.0pt respectively? **Tick** the correct box on the answer sheet.


9.2 Which of the statements is expected, if the potential is applied as –1.2 V instead 5.0pt of –0.5 V at the first step (horizontal line) in Figure 1b? <u>Tick</u> the correct box on the answer sheet.

9.3 Calculate the scan rate of the data presented in Figure 2a as mV/s at 298 K. 8.0pt

The potential of the following cell is measured as 0.437 V.

 Pt,H_2 (0.92 bar) | HCl(1.50×10⁻²M),AgCl(sat) | Ag

- **9.4** <u>**Calculate**</u> the standard electrode potential (V) of half-cell of $AgCl(s)+e^- \rightarrow 16.0pt$ $Ag(s)+Cl^-$ (aq) at 298 K. *Note*: All workings must be clearly shown.
- **9.5** Which of the statement is the main purpose of step 5 in this analysis? <u>Tick</u> the 5.0pt correct box on the answer sheet.

- **9.6** Write net ionic equations for the complexation and the back titration reaction 6.0pt that occured in *step* 7 on the answer sheet.
- **9.7** Calculate the concentration of Ni²⁺ as mg/L in the wastewater of the factory. 25.0pt *Note*: All workings must be clearly shown.
- **9.8** <u>**Calculate**</u> the minimum pH value for starting the precipitation of Ni²⁺ ions in 30.0pt the solution obtained in *step 5* by passing saturated H_2S gas into the solution until saturation is achieved. If you cannot solve question **9.7**, use 20 *mg/L Ni*²⁺ *sample* for this question. *Note*: All workings must be clearly shown.

Quantification of Heavy Metal Ions

9.1 (5.0 pt)

D Peak 1: electrochemical reduction of Ni / Peak 2: electrochemical reduction of Cu

Deak 1: electrochemical reduction of Cu / Peak 2: electrochemical reduction of Ni

D Peak 1: electrochemical reduction of Ni / Peak 2: electrochemical oxidation of Cu

 $\hfill\square$ Peak 1: electrochemical oxidation of Ni / Peak 2: electrochemical oxidation of Cu

Deak 1: electrochemical oxidation of Cu / Peak 2: electrochemical oxidation of Ni

9.2 (5.0 pt)

- □ Evolution of NO
- \Box Evolution of NO₂
- □ Evolution of nitrogen
- □ Evolution of oxygen
- □ Evolution of hydrogen

 $\textbf{9.3}\;(8.0\; \mathrm{pt})$

Show your calculations:

Scan rate = mV/s

$\textbf{9.4}\;(16.0\; \mathrm{pt})$

9.5 (5.0 pt)

□ Modification of Pt wire with Ni–Cu alloy film

 \Box Modification of Pt wire with Ni film

□ Electrochemical stripping of both Cu and Ni from Cu–Ni-modified Pt wire to the solution

□ Electrochemical stripping of Cu from Cu–Ni-modified Pt wire to the solution

□ Electrochemical stripping of Ni from Cu–Ni-modified Pt wire to the solution

9.6 (6.0 pt)

Complexation:

Back titration:

 $\textbf{9.7}\;(25.0\;\mathrm{pt})$

Show your calculations:

Ni²⁺ concentration: mg/L:

 $\textbf{9.8}\;(30.0\;{\rm pt})$

Show your calculations:

Minimum pH value: