

Israel (Israel)

General Instruction

- Only write with pen. Your calculator should be non-programmable.
- This theoretical exam booklet contains a lot of pages, not including general instructions.
- This examination has 9 problems.
- You will have **5 hours** to solve the exam.
- Begin only when the START command is given.
- All results must be written in the appropriate boxes in pen in the designated areas on the answer **sheets**. Use the back of the exam sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- · Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a **30-minute** warning before the Stop command.
- You **must stop** working when the **STOP** command is given. Failure to stop writing will lead to the nullification of your exam.
- The official English version of this examination is available on request only for clarification.
- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise hand and wait until an invigilator arrives.

GOOD LUCK!

G0-2 Israel (Israel)

Problems & Grading Information

Problem No	Title	Total Score	% of Total Score
1	Two Beauties of Turkey: the Van Cat and the Ankara Cat	24	8
2	A Tale of a Reactive Intermediate	77	10
3	(±)-Coerulescine	51	8
4	Symmetry Does Matter!	66	10
5	Konya, Carrot, Beta-Carotene, Vitamin-A, Immune System, Vision	100	14
6	Thermodynamics through an Interstellar Journey	80	12
7	Phthalocyanines	85	12
8	Boron Compounds and Hydrogen Storage	58	14
9	Quantification of Heavy Metal Ions	100	12
	TOTAL	641	100

G0-3

Authors

ALANYALIOĞLU, Murat, Atatürk University AYDOĞAN, Abdullah, İstanbul Technical University BURAT, Ayfer Kalkan, İstanbul Technical University DAĞ, Ömer, Bilkent University DAŞTAN, Arif, Atatürk University KILIÇ, Hamdullah, Atatürk University METİN, Önder, Koç University SARAÇOĞLU, Nurullah, *Atatürk University* TÜRKMEN, Yunus Emre, Bilkent University ÜNLÜ, Caner, İstanbul Technical University YILMAZ, İsmail, İstanbul Technical University YURTSEVER, Mine, İstanbul Technical University

Editor

SARAÇOĞLU, Nurullah, Atatürk University

GO-4

Israel (Israel)

Physical Constants and Equations

Avogadro's number	$N_A = 6.0221 \times 10^{23} \ \mathrm{mol}^{-1}$
Boltzmann constant	$k_B = 1.3807 imes 10^{-23} \mathrm{JK}^{-1}$
Universal gas constant	$R = 8.3145\mathrm{JK}^{-1}\mathrm{mol}^{-1} = 0.08205~\mathrm{atm}~\mathrm{LK}^{-1}\mathrm{mol}^{-1}$
Speed of light	$c = 2.9979 imes 10^8 \mathrm{ms}^{-1}$
Planck's constant	$h = 6.6261 \times 10^{-34} \mathrm{Js}$
Faraday's constant	$F = 9.6485 \times 10^4 \mathrm{C \ mol}^{-1}$
Mass of electron	$m_e = 9.1093\times10^{-31}~{\rm kg}$
Standard pressure	$P=1$ bar $=10^5$ Pa
Atmospheric pressure	$P_{atm} = 1.01325 imes 10^5 \mathrm{Pa} = 760 \mathrm{mmHg} = 760 \mathrm{torr}$
Zero of the Celsius scale	273.15 K
1 picometer (pm)	$10^{-12} \text{ m}; 1 \text{ Å} = 10^{-10} \text{ m}$
1 nanometer (nm)	$10^{-9} m$
	$1 \text{ eV} = 1.6021 \times 10^{-19} \text{ J}$
	1 cal = 4.184 J
	$1 \text{ amu} = 1.6605 \times 10^{-27} \text{ kg}$
Charge of an electron	$1.6021 imes10^{-19} extsf{C}$
Ideal gas equation	PV = nRT

G0-5
Israel (Israel)

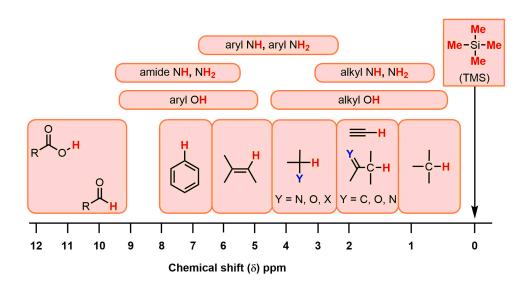
Physical Constants and Equations

Enthalpy	H = U + PV
Gibbs free energy	G = H - TS
	$\Delta_r G = \Delta G^0 + RT lnQ$
	$\Delta_r G^0 = -RT \ln K = -nFE^0_{cell}$
Entropy change	$\Delta S = q_{rev}/T$ where grev is heat for the reversible process
Entropy change	$\Delta S = nR \ln(v_2/v_1)$ (for isothermal expansion of an ideal gas)
Nernst equation	$E = E^{0} + \frac{RT}{nF} \ln \frac{C_{oxidation}}{C_{reduction}}$
Energy of a photon	$E = \frac{hc}{\lambda}$
Integrated rate law	
Zeroth-order	$\left[A\right] = \left[A\right]_0 - kt$
First-order	$\ln\left[A\right] = \ln\left[A\right]_0 - kt$
Second order	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$
Arrhenius equation	$k = Ae^{-E_a/RT}$
Equation of linear calibration curve	y = mx + n
Lambert–Beer equation	$A = \varepsilon lc$

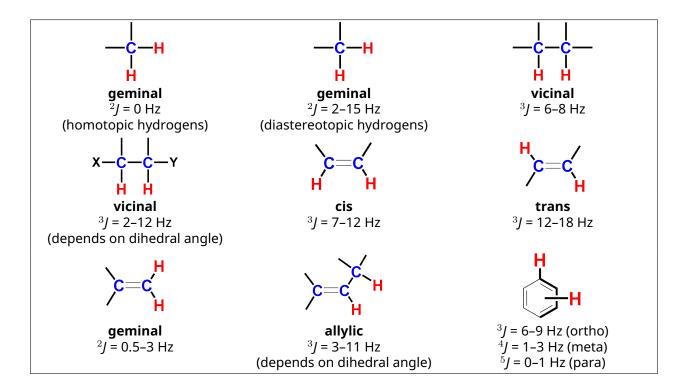
Periodic Table of Elements

1																	18
1 H 1.008	2		S	omic numb symbo omic weig	ol							13	14	15	16	17	2 He 4.003
3 Li 6.94	4 Be _{9.01}											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	Tc	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57-71	72 Hf 178.5	73 Ta 180.9	74 VV 183.8	75 Re 186.2	76 Os 190.2	77 r 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po	85 At	Rn
87 Fr	Ra -	89-103	104 Rf -	105 Db	106 Sg	107 Bh -	108 Hs	109 Mt -	110 Ds	111 Rg -	112 Cn	113 Nh -	114 FI -	115 Mc -	116 Lv -	117 Ts	118 Og

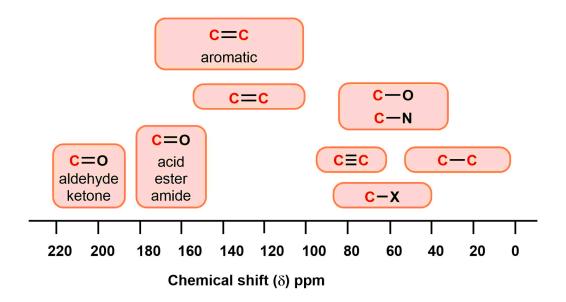
5	7	58	59	60	61	62	63	64	65	66	67	68	69	70	71
L	a	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
13	8.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
8	9	90	91	92	93	94	95	96	97	98	99	100	101	102	103
A	C	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	-	232.0	231.0	238.0		-	-	-	-	-	-	-	-	-	-



Copyright © 2018 International Union of Pure and Applied Chemistry


Reproduced by permission of the International Union of Pure and Applied Chemistry

GO-7
Israel (Israel)



Typical Coupling Constants

G0-8
Israel (Israel)

G0-9 Israel (Israel)

IR Absorption Frequency Table

Functional Group	Type of Vibration	Absorption Frequency Region (cm ⁻¹)	Intensity
Alcohol			
O-H	(stretch, H-bonded)	3600–3200	strong, broad
О-П	(stretch, free)	3700-3500	strong, sharp
C-O	(stretch)	1150–1050	strong
Alkane			
C-H	stretch	3000-2850	strong
C-11	bending	1480-1350	variable
Alkene			
=C-H	stretch	3100-3010	medium
-C-11	bending	1000-675	strong
C=C	stretch	1680–1620	variable
Alkyl Halide			
C-F	stretch	1400–1000	strong
C-CI	stretch	800-600	strong
C-Br	stretch	600–500	strong
C-I	stretch	500	strong
Alkyne			
C-H	stretch	3300	strong, sharp
C≡C	stretch	2260–2100	variable, not present in symmetrical alkynes

G0-10

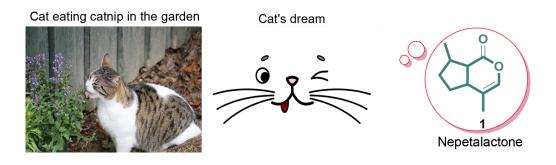
IR Absorption Frequency Table

Amine					
N-H	stretch	3500-3300	medium (primary amines have two bands; secondary amines have one band, often very weak)		
C-N	stretch	1360–1080	medium-weak		
N-H	bending	1600	medium		
Aromatic					
C-H	stretch	3100–3000	medium		
C=C	stretch	1600–1400	medium-weak, multi- ple bands		
Carbonyl	'				
C=O	stretch	1820–1670	strong		
Acid					
C=O	stretch	1725–1700	strong		
O-H	stretch	3300-2500	strong, very broad		
C-O	stretch	1320-1210	strong		
Aldehyde					
C=O	stretch	1740–1720	strong		
C-H	stretch	2850-2820 & 2750-2720	medium, two peaks		
Amide	1	·	1		
C=O	stretch	1690–1640	strong		
N-H	stretch	3500–3100	unsubstituted have two bands		
	bending	1640–1550			

GO-11 Israel (Israel)

IR Absorption Frequency Table

Anhydride					
C=O	stretch	1830-1800 & 1775-1740	two bands		
Ester					
C=O	stretch	1750-1735	strong		
C-O	stretch	1300–1000	two bands or more		
Ketone					
acyclic	stretch	1725–1705	strong		
	stretch	3-membered - 1850	strong		
	stretch	4-membered - 1780	strong		
cyclic	stretch	5-membered - 1745	strong		
	stretch	6-membered - 1715	strong		
	stretch	7-membered - 1705	strong		
lpha,eta-unsaturated	stretch	1685–1665	strong		
	conjugation moves abso	rptions to lower wavenumbe	ers		
aryl ketone	stretch	1700–1680	strong		
Ether					
C-O	stretch	1300–1000 (1150–1070)	strong		
Nitrile					
C≡N	stretch	2260-2210	medium		
Nitro					
N-O	stretch	1560-1515 & 1385-1345	strong, two bands		


Two Beauties of Turkey: the Van Cat and the Ankara Cat

The most beautiful of cats, the Van cat is a pure breed living only in Lake Van basin. Another endemic cat breed is the Ankara cat. They are called Angora cats. Their most important feature is their two different eye colors.

Just like people, cats can sometimes be stressed and angry. Just as people are made happy by melatonin, the stress of cats can be reduced and they can be made happy thanks to a natural product. Nepetalactone is an organic compound isolated from the plant catnip (Nepeta cataria), which acts as a cat attractant. Nepetalactone is a ten-carbon bicyclic monoterpenoid compound derived from isoprene with two fused rings: a cyclopentane and a lactone.

Q1-2

Israel (Israel)

Total synthesis of nepetalactone:

1.1 The above scheme describes the total synthesis of nepetalactone. 14.0pt Draw structures of **A-G**, without stereochemical details.

Hints:

- Compound **A** has strong and sharp band at 3300 cm^{-1} in the IR spectrum.
- A, B, and F are monocyclic, while C, D, E, and G are bicyclic compounds.
- **F** has one doublet at \sim 9.8 ppm in its $^1\text{H-NMR}$ spectrum.

Q1-3
Israel (Israel)

Reactions of nepetalactone:

The above scheme includes a few reactions of one of the enantiopure nepetalactone isomers of **1**. Three of the reaction products (**5**, **6**, and **J**) are used as insect repellents in industry.

1.2 For the relationship between **5** and **6**, which of the following is/are true? 4.0pt <u>Tick</u> the box next to the correct answer(s) on your answer sheets.

Reaction of **1** with DDQ gives highly conjugated compound **H**. Also, thermal reaction of compound **H** with p-quinone gives **I** with molar mass of 226.28 g/mol.

1.3 Draw the structures of **H**, **I**, and **J** indicating stereochemistry. 6.0pt

Hints:

- During the formation of **I** from **H**, sequential pericyclic reactions and an oxidation reaction (due to the presence of O₂) take place, and a well-known gas forms during the reaction.
- J has a strong and very broad band between 3300 and 2500 cm^{-1} in the IR spectrum.

Two Beauties of Turkey: the Van Cat and the Ankara Cat

1.1 (14.0 pt)				
A	В			
C	D			
E	F			
G				

1.2 (4.0 pt)					
☐ Enantiomers ☐ Diastereomers ☐ Identical ☐ Stereoisomers					
1.3 (6.0 pt)					
H	I				
J					

Q2-1
Israel (Israel)

A Tale of a Reactive Intermediate

Arynes constitute a special class of reactive intermediates. The first experimental evidence for the structure of an aryne (benzyne) was demonstrated in 1953 via the elegant labeling experiments by John D. Roberts and coworkers.

In one such experiment, chlorobenzene, whose carbon at position 1 was labeled with radioactive 14 C, was reacted with KNH $_2$ in liquid NH $_3$ to give nearly equal amounts of isotopic isomers **A** and **B** along with the inorganic salt **C**. This reaction proceeds via the formation of aryne intermediate **D**.

2.1 <u>Draw</u> the structure of **A**, **B** and **D**, and **<u>provide</u>** the formula of **C**. **<u>Indicate</u>** the 7.0pt position(s) of ¹⁴C-labeled carbon(s) with an asterisk (*) whenever applicable.

Analysis of the 14 C-labeled product(s) **A** and **B** was achieved via degradation experiments (the 14 C-labeled carbons are not shown on the structures). Radioactivities of the intermediates and final products were examined.

$$A \& B \xrightarrow{NaNO_2} H_2SO_{4(aq)}$$

$$CO_2 + H_2N \xrightarrow{NH_2} HO_2C \xrightarrow{NH_2} HO_2$$

Q2-2

Israel (Israel)

2.2 Tick the appropriate boxes on the answer sheet for the intermediates and products that you expect to exhibit radioactivity.

With the aim of facilitating aryne formation, Kobayashi and co-workers developed a fluoride -induced aryne generation protocol. Using this method, benzene derivative **3** is reacted with furan (**4**) in the presence of CsF, resulting in the formation of **E**, **F**, and **G**.

$$OSO_2CF_3$$
 + O + CsF $MeCN$ E + F + G

- Combustion analysis of **E** revealed the following atom content: 75.8% carbon, 5.8% hydrogen, and 18.4% oxygen.
- **E** does not have a proton that is exchangeable with D₂O in ¹H-NMR spectroscopy.
- **F** is an ionic compound.

2.3 Determine the structures of **E**, **F**, and **G** (<u>without</u> stereochemical details).

In the absence of a nucleophile or a trapping agent, arynes can undergo [2+2]-type cyclodimerization or [2+2+2]-type cyclotrimerization reactions under suitable conditions. The aryne derivative that is obtained when **3** is treated with one equivalent of CsF in MeCN can give, in principle, four different dimerization and trimerization products (**H–K**).

- **H** has two planes of symmetry.
- I is expected to exhibit 21 signals in its ¹³C-NMR spectrum.
- I and J both exhibit an m/z value of 318.1 in their mass spectra.

2.4 Determine the structures of **H-K**.

16pt

8.0pt

When **5** is reacted with β -ketoester **6** in the presence of 2 equivalents of CsF at 80 °C, **L** is obtained as the major product. The 1 H-NMR and 13 C-NMR data for **L**, recorded in CDCl₃, are as follows:

- ¹H-NMR: δ 7.79 (dd, J = 7.6, 1.5 Hz, 1H), 7.47–7.33 (m, 2H), 7.25–7.20 (m, 1H), 3.91 (s, 2H), 3.66 (s, 3H), 2.56 (s, 3H) ppm.
- 13 C-NMR: δ 201.3, 172.0, 137.1, 134.4, 132.8, 132.1, 130.1, 127.5, 51.9, 40.2, 28.8 ppm.

2.5 Determine the structure of **L**.

5.0pt

- 2.6 In the reaction shown in task 2.5, which of the statement(s) in the answer sheet 4.0pt describe(s) the function of CsF?
 - The pK_a values of HF and β -ketoester **6** in dimethyl sulfoxide (DMSO) are about 15 and 14, respectively.

Diazapyrone derivative **8** was shown to be a useful reactant for the construction of a variety of cyclic frameworks. Its preparation from phenylglyoxylic acid (**7**) and its use in two different reactions are described below.

- **Q** and **T** are gases under normal conditions.
- O and P are constitutional isomers.
- **Q** does not have any signals in its IR spectrum.
- Heating 1 mol of **R** at 85 °C generates 1 mol of reactive intermediate **S**.
- Reaction of 8 with two equivalents of S gives U, Q, and T.

ONO
$$CO_2H \xrightarrow{CF_3CO_2H \text{ (cat)}} R \xrightarrow{85 \text{ °C}} S + Q + T$$

$$OH$$

Note:

equiv= equivalent

cat= catalyst

2.7 Determine the structures of **M**–**U**.

28.0pt

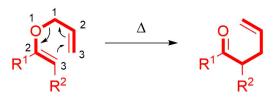
A Tale of a Reactive Intermediate

2.1	1 (7.0 pt)	
Α		В
С		D
2.2	2 (9.0 pt)	
Con	sidering the process for only A :	Considering the process for only B :
	Compound 1	☐ Compound 1
	BaCO ₃ (Batch 1)	☐ BaCO ₃ (Batch 1)
	Compound 2	□ Compound 2
	BaCO ₃ (Batch 2)	☐ BaCO ₃ (Batch 2)

2.3 (8.0 pt)	2.3 (8.0 pt)				
E	F				
G					
G					
2.4 (16.0 pt)					
2.4 (10.0 pt)					
н	I				
1	K				
J	N.				

2.5	$5~(5.0~\mathrm{pt})$
L	
2.6	5 (4.0 pt)
	F ⁻ hydrolyzes the trifluoromethanesulfonate (O ₃ SCF ₃) group of 5 .
	F ⁻ attacks the –SiMe ₃ group of 5 .
	F ⁻ acts as a base to deprotonate 6 .
	F [–] acts as a nucleophile and attacks the ester group of 6 .

2.7 (28.0 pt)		
М	N	
O and P	Q	
R	S	
Т	U	


(±)-Coerulescine

A spiro compound is typically an organic compound containing rings linked together by one common carbon atom (spiroatom, bold in the figure below). The spiro[pyrrolidin-3,3'-oxindole] ring system is a structural framework incorporated in several cytostatic alkaloids and unnatural compounds. Coerulescine (1) and horsfiline are the simplest prototype members of this subfamily that show diverse biological activity and can be synthesized by the route shown below.

Claisen rearrangement, which is a [3,3]-sigmatropic rearrangement, is a powerful carbon–carbon bond-forming reaction in which an allyl vinyl ether is converted thermally to an unsaturated carbonyl compound as shown in the Scheme below. When compound **A** is heated, it undergoes Claisen rearrangement to give carbonyl compound **B**.

For this entire task, your answers can be given without any stereochemical details.

Q3-2

Israel (Israel)

Q3-3

Israel (Israel)

3.1 <u>Draw</u> the structures of **A** and **B**.

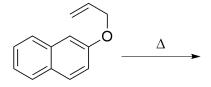
8.0pt

- A is an inseparable mixture of *cis/trans* isomers.
- **B** has IR absorption at 1726 cm⁻¹.
- 3.2 <u>Draw</u> structures for C, D, E, and F.
 - **D**-**F** have a bicyclic structure.

16.0pt

- 3.3 Choose the correct order of steps for the transformation of **F** to **G**.
- 4.0pt

3.4 Draw structures for **G** and **H** (both are spiro compounds).


8.0pt

3.5 <u>Draw</u> the structure of the intermediate produced by treatment with n-BuLi, in 5.0pt the step of $\mathbf{H} \rightarrow \mathbf{coerulescine}$ (1).

Coerulescine (1), on treatment with *N*-bromosuccinimide (NBS), gives the bromo derivative, which upon heating with sodium methoxide in the presence of cuprous iodide gives **horsfiline (I)** in 60% yield.

Choose the correct structure for compound **I** consistent with the following partial 1 H-NMR data: δ 7.05 (d, J = 1.4 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 6.72 (dd, J = 8.0, 1.4 Hz, 1H) ppm.

3.7 When the allyl ether of 2-naphthol (in the scheme below) is heated, a sigmatropic rearrangement is initiated. Write the structure of the major product isolated from this reaction.

(±)-Coerulescine

3.1 (8.0 pt)	
Α	В
^	B
3.2 (16.0 pt)	
Г	T ₂
С	D
E	F

3.3 (4.0 pt)	
Imine formation, then reduction, then amida	
Amidation, then imine formation, then redu	
Reduction, then amidation, then imine form	ation
3.4 (8.0 pt)	
G	Н
3.5 (5.0 pt)	

3.6 (5.0 pt)

3.7 (5.0 pt)

Q4-1

Israel (Israel)

Symmetry Does Matter!

There are numerous reactions in organic chemistry that proceed through cyclic transition states and these are classified as pericyclic reactions. Woodward–Hoffmann rules, developed by Robert B. Woodward and Roald Hoffmann, are used to rationalize stereochemical aspects and the activation energy of pericyclic reactions.

There are three possible benzotropone isomers - **1**, **A** and **B**. Two of the benzotropone isomers were isolated, but 3,4-benzotropone (**1**) has not been isolated. Its instability is attributed to the *o*-quinoidal structure of **1** because it has no sextet electron system in the benzene ring.

Three possible reactions of **1** are shown below:

	Woo	odward–Hoffmann r	ules	
	Electrocyclic reactions		Cycloadditions	
Number of electrons	Thermal (Δ)	Photochemical ($h u$)	Thermal (Δ)	Photochemical ($h u$)
4 <i>n</i> (n = 1, 2,)	Conrotatory (con)	Disrotatory	Disfavored	Favored
4 <i>n</i> +2 (n = 1, 2,)	Disrotatory (dis)	Conrotatory	Favored	Disfavored

4.1 Fill in the table in the answer sheets for reactions (i)–(iii) that lead to products 12.0pt 2–5:

4.2 Draw the structures of the *stable* benzotropone isomers: **A** (with 6 signals in its 6.0pt 13 C-NMR) and **B** (with 11 signals in its 13 C-NMR).

Q4-2

Israel (Israel)

4.3 When the following tetraene is reacted under photochemical conditions, symmetry-allowed product(s) of <u>three</u> different ring sizes can form according to the Woodward–Hoffmann rules. <u>Tick</u> the correct answer <u>in each row</u>.

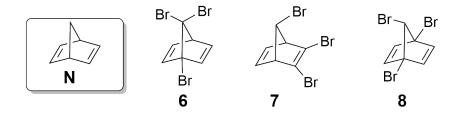
The Nobel Prize in Chemistry 2015 was awarded jointly to the Turkish scientist Aziz Sancar, Swedish scientist Tomas Lindahl, and American scientist Paul Modrich for their "mechanistic studies of DNA repair". Pyrimidine bases found in DNA may undergo a photochemical [2+2]-cycloaddition reaction (see above figure) with UV light that reaches a person's skin, causing damage to DNA, which may ultimately lead to skin cancer. The research by Professor Aziz Sancar focused on the DNA repair mechanism for this type of damage.

Thymine (\mathbf{T}) is one of the nucleobases that can undergo such a photochemical reaction with UV light. Let us assume that we have a solution of free thymine \mathbf{T} that was subjected to UV irradiation.

$$\begin{array}{c|c} O & Me \\ \hline N & Me \\ \hline N & H \\ \hline T & \end{array}$$

4.4 Considering stereochemistry, <u>draw</u> the structures of <u>all possible products</u> of this reaction between two free thymine (T) molecules.

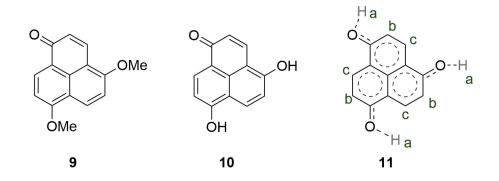
Circle the compound(s) which is/are chiral.


Drawing only one enantiomer of an enantiomeric pair is sufficient.

Please note that only C=C bonds participate in this reaction.

Q4-3
Israel (Israel)

A broad range of halogenated derivatives of norbornadiene (\mathbf{N}) are known in the literature. Tribromonorbornadiene ($C_7H_5Br_3$) has six achiral (meso) isomers. Three of these isomers ($\mathbf{6}$, $\mathbf{7}$, and $\mathbf{8}$) are given below.



- 4.5 How many signals do you expect from the ¹³C-NMR spectra of isomers 6, 7, and 9.0pt
 8? Fill in the following boxes.
- **4.6 Draw** structures of the remaining achiral (meso) tribromo-norbornadiene 9.0pt $(C_7H_5Br_3)$ achiral (meso) isomers (**C**, **D**, and **E**) in addition to **6–8** over the given figures in the boxes.

In the NMR spectrum of ether **9**, the two MeO– groups and also all the hydrogen atoms on the rings are different.

However, diphenol **10** has a very simple NMR spectrum and there are only three types of protons (marked as a, b, and c).

11 is a reasonable model for analyzing the NMR spectrum of **10** and its effective symmetry.

4.7 How many signals do you expect from the ¹³C- and ¹H-NMR spectra of 12 and 8.0pt 13?
(Shown in the next page and in the answer sheets)

Q4-4

Israel (Israel)

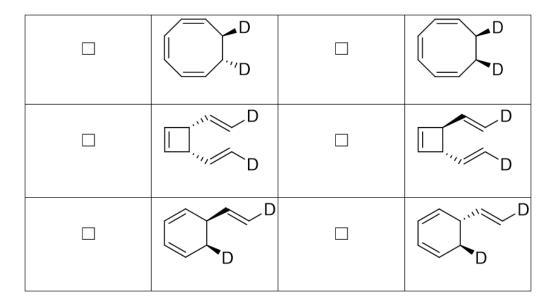
Symmetry Does Matter!

4.1 (12.0 pt)

Reaction	Product	[? + ?] cycloaddition	Δ or $h u$
i	2		
ii	3		
iii	4		
	5		

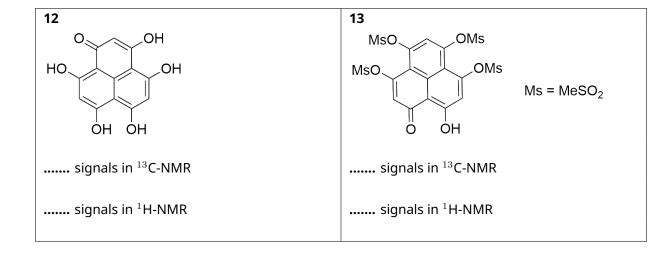
4.2 (6.0 pt)

Α	В



4.3 (6.0 pt)

	4.4 (16.0 pt)
,	


A4-3

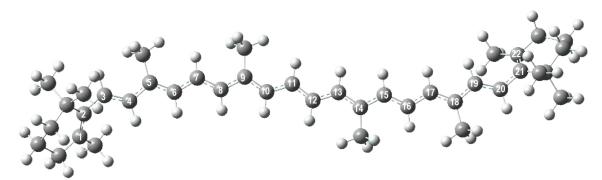
Israel (Israel)

4.5 (9.0 pt)

4.6 (9.0 pt)

4.7 (8.0 pt)

Q5-1 Israel (Israel)


Konya, Carrot, Beta-Carotene, Vitamin-A, Immune System, Vision

Mevlana (Rumi) was a great mystic and Sufi poet who lived out his days in Konya in the 13^{th} century. The indirect relevance of Konya to chemistry is that the city provides 65% of the country's carrot production, from which one of the essential vitamins (vitamin A) is obtained.

Carrot is an important source of β -carotene, which gives the vegetable its orange color. This molecule is a red-orange pigment naturally found in plants and fruits and is a provitamin A carotenoid. It is converted to vitamin A, which is essential for normal growth and development, the immune system, and vision function.

β-Carotene has an extended polyene chain of 22 carbon atoms. It is a conjugated π -system, having alternating single and double bonds. Its experimental maximum absorption wavelength (λ_{max}) is 455 nm. We assume that all the bonds between C₁ and C₂₂ are conjugated bonds. There are 22 π -electrons in the molecule (Figure 1).

Figure 1. Ball and stick representation of the structure of β-carotene. The gray and white spheres represent the carbon and hydrogen atoms, respectively. The numbered carbon atoms belong to the linear conjugated π -segment of the molecule.

To a crude approximation, the electrons in the C-2Pz orbitals, which are perpendicular to the molecular plane, are assumed to move along the entire molecule, without interacting with each other. They are like independent particles confined in a molecule moving along the x-axis in one dimension. These characteristics of π -electrons make them eligible for being treated by the simplest model called the **particle in one-dimensional box** model.

The wave function and the energies of the quantized levels for an electron moving in a one-dimensional box with infinite potential walls are given as follows:

$$\Psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L} \qquad (Eq.1)$$

where n is the quantum number, $n=1,2,3,4,.... \infty$, and L is the box length.

$$E_n=\frac{n^2h^2}{8m_oL^2}\quad (Eq.2)$$

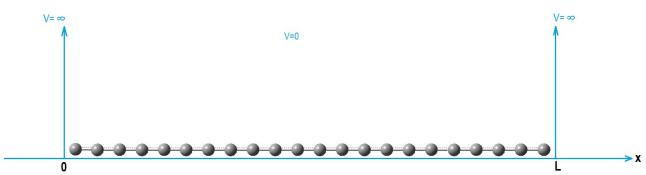
In two dimension, within the framework of independent particle approximation, the wavefunction is expressed as a product of one-dimensional wavefunctions, and the energy is expressed as a sum of one-dimensional energies. The energy levels of the two dimensional rectangular box is given as follows:

$$E_{n_x,n_y} = (\frac{n_x^{\ 2}}{L_x^{\ 2}} + \frac{n_y^{\ 2}}{L_y^{\ 2}}) \cdot \frac{h^2}{8m_e} \quad (Eq.3)$$

where n_x , n_y are the quantum numbers and they are positive integers. L_x , L_y are the dimensions of the box in the 2D model. They are positive numbers.

5.1 Which two of the sentences given below are correct? <u>Tick</u> only one answer 13.0pt which includes correct sentences in your answer sheet.

The β-carotene molecule is orange in color because:


- i) it absorbs in the visible region of the electromagnetic spectrum.
- ii) HOMO → LUMO transition occurs by absorption of IR photon.
- **iii)** the spacing between the 22^{nd} and the 23^{rd} energy levels is equal to the energy of the IR photon at the orange wavelength.
- iv) it absorbs green/blue light and it transmits red/yellow color.
- v) it absorbs in the UV-Vis region since the molecule has no net dipole moment.

Although it is highly unrealistic, let us assume that the conjugated segment of the molecule is linear and treated with the particle in a one-dimensional box model as shown in figure 2. In this case, the length of the box can be approximated as L=1.40×n $_C$ (in Å), where n $_C$ is the number of carbon atoms in the conjugated segment.

Use this information to answer the questions 5.2-5.6.

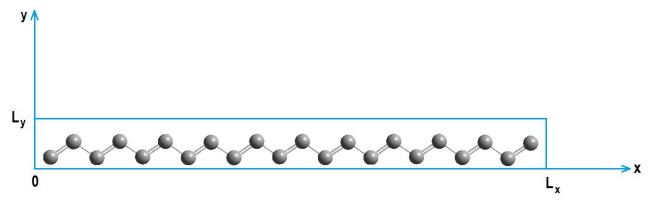


Figure 2. Schematic representation of the conjugated line segment made up carbon atoms of β -carotene in a one-dimensional box of length L.

5.2	<u>Calculate</u> the energies (in J) of the lowest two energy levels	13.0pt
5.3	<u>Draw</u> the wavefunctions of the lowest two energy levels with proper labelling the x-axis.	15.0pt
5.4	Sketch the energy level diagram up to $n = 4$ showing the relative spacing.	8.0pt
5.5	What is the total π -energy (in J) of the molecule?	12.0pt
5.6	<u>Calculate</u> the wavelength (in nm) at which the transition between the highest occupied and lowest unoccupied energy levels occurs.	10.0pt

Use the particle in a two-dimensional box model to answer questions 5.7-5.8.

Figure 3. Schematic representation of the conjugated carbon atoms of β -carotene in a two-dimensional box.

Assume that the conjugated segment is made up of carbon atoms that are all-*trans* to each other. The motion of the π -electrons is studied in the two-dimensional rectangular box with the dimensions L_x = 26.0 Å, L_y = 3.0 Å (Figure 3).

- 5.7 <u>Calculate</u> the energies (in J) of the highest occupied and the lowest unoccupied energy levels and the wavelength (in nm) at which the transition between these energy levels occurs.
- 5.8 What should be the L_x value (in Å) in order for the molecule to absorb light at the experimental λ_{max} =455 nm if L_y is kept constant at 3.0 Å. (Assume that the quantum numbers for HOMO and LUMO are the same as in the question 5.7.)

Konya, Carrot, Beta-Carotene, Vitamin-A, Immune System, Vision

5.1 (13.0 pt)			
a) i and ii	b) i and iii	c) i and iv	☐ d) i and v
e) ii and iii	\square f) ii and iv	\square g) ii and v	\square h) iii and iv
j) iii and v	k) iv and v		
5.2 (13.0 pt)			
Calculation:			
5.3 (15.0 pt)			

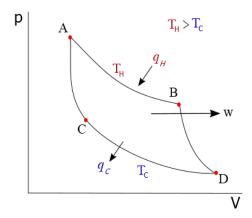
5.4 (8.0 pt)	
5.5 (12.0 pt)	

5.6 (10.0 pt)	
calculation:	
5.7 (17.0 pt)	
calculation:	

5.8 (12.0 pt)		

Thermodynamics through an Interstellar Journey

Part 1


In a hypothetical universe, an unknown amount of diborane participates in the following reaction:

$$B_2H_6(g) + 6H_2O(l) \rightarrow 2H_3BO_3(s) + 6H_2(g)$$

Assume that in this hypothetical universe, $H_3BO_3(s)$ obtained from this reaction was completely sublimed at 300 K.

The necessary energy for sublimation was obtained through work released by **one cycle** of an ideal heat engine in which 1 mol of monoatomic perfect gas flows through the cycle described in the pressure (p) – volume (V) diagram below:

- A \rightarrow B; isothermal reversible expansion receiving 250 J by heat transfer (q_H) at a temperature of 1000 K (T_H) from a hot source.
- $B \rightarrow D$; reversible adiabatic expansion.
- D → C; isothermal reversible compression at a temperature of 300 K (T_C) releasing some amount of heat (q_C) to a cold sink.
- C→A; reversible adiabatic compression.

After heat transfers, the remaining energy is released as work (w). Also, q_H and q_C are related to T_C and T_H as follows:

$$\frac{|q_H|}{|q_C|} = \frac{T_H}{T_C}$$

The efficiency of the cycle can be found by work released by cycle (w) divided by heat absorbed by cycle (q_H) .

Q6-2

Israel (Israel)

You are provided with the change in enthalpies of the following reactions at 300 K.

(1)
$$B_2H_6(g) + 6 Cl_2(g) \rightarrow 2 BCl_3(g) + 6 HCl(g)$$
 $\Delta_r H(1) = -1326 \text{ kJ mol}^{-1}$
(2) $BCl_3(g) + 3 H_2O(l) \rightarrow H_3BO_3(g) + 3 HCl(g)$ $\Delta_r H(2) = -112.5 \text{ kJ mol}^{-1}$

(3)
$$B_2H_6(g) + 6 H_2O(l) \rightarrow 2 H_3BO_3(s) + 6 H_2(g)$$
 $\Delta_r H(3) = -493.4 \text{ kJ mol}^{-1}$

(4)
$$\frac{1}{2}$$
 H₂(g) + $\frac{1}{2}$ Cl₂(g) \rightarrow HCl(g) $\Delta_r H(4) = -92.3$ kJ mol⁻¹

6.1 Calculate the molar enthalpy of sublimation (in kJ mol
$$^{-1}$$
) for H $_3$ BO $_3$ at 300 K. 5.0pt

6.2 Calculate the
$$\Delta_r$$
U (internal energy) in terms of kJ mol $^{-1}$ at 300 K for the reactions (2) and (4) given above (assume ideal gas behavior for each gaseous species in each reaction).

Calculate the overall amount of work produced by the heat engine (
$$|w|$$
) and the overall amount of heat released to the cold sink ($|q_C|$), both in terms of J.

Calculate the entropy change (
$$\Delta S$$
) for $A \rightarrow B$ and $D \rightarrow C$ processes in the heat 6.0pt engine in terms of J K^{-1} .

Calculate the Gibbs energy change (
$$\Delta G$$
) in terms of J for $A \rightarrow B$ and $D \rightarrow C$ processes in the heat engine.

Calculate the amount of
$$H_2(g)$$
 (in moles) produced according to the reaction 3.0pt given at the beginning of the task for one cycle of the engine.

Part 2

Interstellar journeys can be done by using diborane as rocket fuel. Combustion of diborane is shown below:

$$B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(s) + 3H_2O(g)$$

Combustion of diborane is experimented in a 100 L closed container at different temperatures and the equilibrium conditions were recorded.

	8930 K	9005 K
B ₂ H ₆ (g)	0.38 mol	0.49 mol
H ₂ O(g)	0.20 mol	0.20 mol

Partial pressure of O_2 (g) was stabilized to 1 bar and kept constant at all conditions. Assume that in this hypothetical universe; $\Delta_r S^\circ$ and $\Delta_r H^\circ$ are independent of temperature, the standard molar entropy (S°) of $B_2 O_3$ (s) does not change with pressure, all the gas species behave as an ideal gas, and all species remain in the same phase, without any further decomposition before or after reaction, at all temperatures then:

- **6.9 Calculate** K_p (pressure-based equilibrium constant) at 8930 K and 9005. 8.0pt
- **6.10** Calculate Δ_r G° of the reaction in terms of kJ mol⁻¹ at 8930 K and 9005 K. (If you failed to find K_p, please use K_p (8930 K) =2, K_p (9005 K) = 0.5)
- **6.11** Calculate Δ_r G° (in terms of kJ mol⁻¹), Δ_r H° (in terms of kJ mol⁻¹), and Δ_r S° ((in terms of J mol⁻¹ K⁻¹) of the combustion reaction at 298 K. (If you failed to find K_p, please use K_p (8930 K) = 2, K_p (9005 K) = 0.5)
- **Tick** the correct answer in the table by determining whether combustion reactions are favored or not at given T below under standard pressure (1 bar).
- **6.13** <u>Calculate</u> the Δ_f H (kJ mol⁻¹) and S°(kJ mol⁻¹ K⁻¹) of H₂O(g) using the values 6.0pt given in the table below. (Δ_f H = enthalpy of formation, S° = standard entropy) (If you fail to find Δ_r H° and Δ_r S° of the combustion, please use Δ H° = 1000 kJ mol-1, Δ S° = 150 J K⁻¹ mol⁻¹)

	Δ _f H (298 K)	S° (298 K)
B ₂ H ₆ (g)	36.40 kJ mol ⁻¹	$0.23~\mathrm{kJ}~\mathrm{mol}^{-1}~\mathrm{K}^{-1}$
O ₂ (g)	$0.00~{ m kJ~mol^{-1}}$	0.16 kJ mol $^{-1}$ K $^{-1}$
B_2O_3 (s)	−1273 kJ mol ^{−1}	0.05 kJ mol $^{-1}$ K $^{-1}$

Thermodynamics through an Interstellar Journey

6.1 (5.0 pt)	
Show your calculation:	
6.2 (12.0 pt)	
C.2 (12.0 pt)	
Show your calculation:	
6.3 (6.0 pt)	
Show your calculations:	

6.4 (3.0 pt)
Show your calculation:
6.5 (6.0 pt)
Show your calculation:
6.6 (6.0 pt)
Show your calculations:

6.7 (5.0 pt)	
Show your calculation:	
6.8 (3.0 pt)	
Show your calculation:	

6.9 (8.0 pt)

Show your calculations:	
•	

6.10 (6.0 pt)	
Show your calculations:	
6.11 (6.0 pt)	
Show your calculations:	

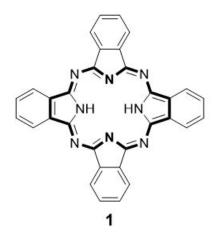
A6-6

6.12 (8.0 pt)

	Favored	Unfavored
298 K		
8930 K		
9005 K		
9100 K		

6.13 (6.0 pt)			

Show your calculations:		



Israel (Israel)

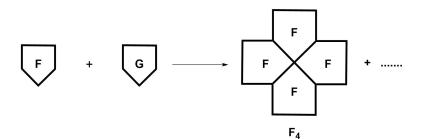
Phthalocyanines

Emeritus Professor Özer Bekaroğlu

The term phthalocyanine (Pc) takes its origin from the Greek "naphtha", which means rock oil, and "cyanine", which means dark blue. Turkish scientist Özer Bekaroğlu can be regarded as the pioneer of Pc chemistry in Turkey.

Metal-free phthalocyanine (1, H₂Pc) is a large planar macrocyclic compound with the formula $(C_8H_4N_2)_4H_2$.

How many π -electrons are there in the bold region of the H_2 Pc molecule (com-7.1 4.0pt pound 1 shown above)?



Pcs containing one or two metal ions are called metallo-phthalocyanines (MPcs) and they exhibit different geometries as shown above.

- **7.2 Complete** the table in your answer sheet by determining the coordination number of central ions in **2–5**.
- **7.3 Complete** the table in your answer sheet by determining the oxidation number 6.0pt of each metal ion (Cu, Ti, and Ce) in **2**, **3**, and **5**.
- **7.4 Complete** the table in your answer sheet by determining the geometry of compounds **2–5**.
- **7.5** Complete the table in your answer sheet by determining the magnetic property 8.0pt of compounds 2–5.
 - Use the letter "**p**" for paramagnetic property and letter "**d**" for a diamagnetic property.
- **7.6 Write** the ground-state electron configuration of the silicon (Si) ion in compound **4**, and **find** all the quantum numbers for the 2p electrons in its ground state.

Metal-free phthalocyanine ($\mathbf{1}$, H_2 Pc) is commonly formed through the cyclotetramerization of phthalonitriles. On the other hand, Pcs having different substituents are called asymmetric, which can be prepared by the statistical cyclization of two different phthalonitriles. This method has no selectivity and a mixture of all possible phthalocyanine isomers is obtained.

- **7.7 <u>Draw</u>** the possible phthalocyanine products that may form in the statistical cyclization method by using **F** and **G**. If there are any stereoisomers, label them as *cis* or *trans*-.
 - **F** and **G** represent two different symmetrical phthalonitriles.
 - One of the products is \mathbf{F}_4 as given below.
 - Draw the other products in a format similar to that shown for \mathbf{F}_4 (6).

Q7-3

Israel (Israel)

Pcs are used as photosensitizers in the photodynamic therapy (PDT) of cancer due to their strong absorption in the visible spectrum and high molar absorption coefficients. PDT consists of three essential components: **photosensitizer**, light, and oxygen. None of these is individually toxic, but together they initiate a photochemical reaction resulting in the generation of cytotoxic singlet oxygen ($^{1}O_{2}$) that can destroy cancer cells.

(multiplicity) 1 **O**₂

- The multiplicity of an energy level is defined as 2S+1
- If the two spins are parallel ($\uparrow\uparrow$), S=1, and if the two spins are antiparallel ($\uparrow\downarrow$), S=0.
- **7.8 Draw** the molecule orbital (MO) diagram of the lowest energy singlet state of dioxygen (${}^{1}O_{2}$) and **calculate** its bond order.
 - Note: There are no unpaired electrons in that state!
- **7.9** If the wavelength of the light needed to excite triplet oxygen into singlet oxygen is 1270 nm, **calculate** the energy (in kJ per mole) needed for this transition.

Phthalocyanines

7.1 (4.0 pt)	
The number of π -electrons in an H_2 Pc:	
7.2 (8.0 pt)	

Central ion	Copper ion	Titanium ion	Silicon ion	Cerium ion
Coordination number				

7.3 (6.0 pt)

Metal ion in compound	2	3	5
Oxidation number			

7.4 (8.0 pt)

Geometry	Compound
Octahedral	
Square prism	
Square pyramidal	
Square planar	

A7-2

7.5 (8.0 pt)

Compound	Magnetic property
2	
3	
4	
5	

7.6 (14.0 pt)

Electron configuration: ***			***	
	n	I	m_1	m_s
Quantum numbers for 2p electron	s:			

A7-3

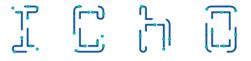
7.7 (19.0 pt)	
Products:	


7.8 (12.0 pt)
MO diagram:
Donal andon
Bond order:
7.9 (6.0 pt)
Show you calculation:
Energy = kl/mol

Q8-1

Israel (Israel)

Boron Compounds and Hydrogen Storage



Sodium borohydride (NaBH $_4$) and ammonia borane (BNH $_6$) are the most studied chemical hydrogen storage materials. In this question, you will explore the chemistry of boron and the use of boron compounds as hydrogen storage materials.

Borax ($Na_2B_4O_7\cdot nH_2O$) is a boron mineral that is produced by ETI Mining Company in Turkey. $NaBH_4$ can be synthesized by the reduction of anhydrous borax with metallic sodium under high-pressure hydrogen gas in the presence of silicon dioxide (silica) at 700 °C, namely the Bayer process. In this process, all hydrogen is stored in $NaBH_4$. On the other hand, it has been shown that ammonia borane (BNH $_6$) can be synthesized by the reaction of $NaBH_4$ and ammonium sulfate in dry tetrahydrofuran (THF) at 40 °C (**Hint:** BNH $_6$ synthesis must be conducted in a well-ventilated fume-hood because flammable gas is generated as one of the by-products). While $NaBH_4$ is an ionic compound, ammonia borane is a Lewis acid–base adduct.

8.1	${\color{red} {\bf Write}}$ a balanced chemical equation for the synthesis of NaBH $_4$ from anhydrous	3.0pt
	borax.	

- 8.2 Write a balanced chemical equation for the synthesis of ammonia borane from 3.0pt NaBH₄.
- **8.3 Draw** the molecular geometries of the BH_4^- ion and BNH_6 molecule. 4.0pt
- **8.4** Calculate the hydrogen content of NaBH₄ and BNH₆ as a percentage by mass 4.0pt (wt%).

Q8-2

Israel (Israel)

The hydrogen stored in both compounds can be released via hydrolysis reactions in the presence of a suitable catalyst at room temperature. Upon the hydrolysis reactions, 4 and 3 moles of $\rm H_2$ gas are released from the hydrolysis of 1 mole of $\rm NaBH_4$ and $\rm BNH_6$, respectively, along with metaborate (an anion including B-O bonds).

8.5 Write the balanced chemical equations for the hydrolysis of NaBH $_4$ and BNH $_6$. 4.0pt

One of the simplest stable diboron is diboron trioxide (B_2O_3); and higher borates such as $B_3O_6^{3-}$ cyclic structures containing B-O-bonds also exist. Since B_2O_3 is an acidic compound, it is easily reacted with water to produce boric acid (H_3BO_3). On the other hand, the high temperature and high-pressure reaction of B_2O_3 with ammonia yields two-dimensional boron nitride, which consists of planar graphite-like sheets of alternating B and N atoms only.

- **8.6** Write the balanced chemical equations for the synthesis of boric acid and for the synthesis of boron nitride.
- **8.7 Draw** the molecular structures of the $B_3O_6^{3-}$ ion, boric acid, and a single two-dimensional boron nitride sheet. **Important:** show at least 10 B atoms in the boron nitride structure.

B-H compounds, called boranes, are another important class of boron compounds. The simplest stable borane is diborane (B_2H_6) and many of the higher boranes can be prepared by the pyrolysis of diborane. Diborane can be synthesized via metathesis of a boron halide and a hydride source.

- 8.8 Write a balanced chemical equation for the synthesis of diborane from the reaction of BF_3 and $LiBH_4$. Hint: both products are boron compounds.
- **8.9 Draw** the molecular geometry of the diborane molecule. **Hint:** there is no B-B 2.0pt bond in the molecule.

 BH_3 (borane) is an unstable and highly reactive molecule. Therefore, it is not possible to isolate it as BH_3 under ordinary conditions. However, it can be stabilized via its reaction with carbon monoxide to yield the borane carbonyl molecule BH_3CO , which is an adduct of borane. The preparation of BH_3CO plays an important role in exploring the chemistry of boranes as it indicates the likely existence of the borane molecule.

- **8.10** Sketch the Lewis dot structure of the BH_3CO molecule. Show the formal 3.0pt charges.
- **8.11** Which of the statements in the answer sheets is observed for the C–O bond length of a CO molecule upon the bond formation between BH₃ and CO ? **Tick** the correct box.

The borazine molecule ($B_3N_3H_6$) is isostructural to benzene. It consists of single and double bonded B-N units, with hydrogen atoms attached to them.

Borazine can be synthesized by using a two-step procedure, starting with the synthesis of a symmetrically

Q8-3

Israel (Israel)

trisubstituted chlorine derivatives of borazine ($B_3N_3H_3Cl_3$) from the reaction of ammonium chloride and boron trichloride, followed by reduction of $B_3N_3H_3Cl_3$ with LiBH₄ in THF.

- **8.12 Write** the balanced chemical equations for the two-step synthesis of borazine starting from ammonium chloride in THF (tetrahydrofuran). **Hint:** THF stabilizes one of the products by forming a Lewis acid-base adduct.
- **8.13 Draw** the molecular structures of borazine and its symmetrically trisubstituted 4.0pt chlorine derivative.

Catalysts are substances that accelerate the rate of reactions by allowing them to proceed in a lower energy pathway. The catalytic activity of the catalysts is generally determined by the turnover frequency (TOF), which is calculated by dividing the molar amount of the product to the mol of active catalyst and the time (TOF = mol product/(mol catalyst x time)).

A typical hydrolysis of BNH $_6$ was carried out in 10.0 mL of water by using 100.0 mM BNH $_6$ and 5.0 mg of CuPt/C catalyst (CuPt alloy nanoparticles supported on carbon black containing 8.2 wt% Pt atom). 67.25 mL of hydrogen gas was generated in 5 minutes.

Assuming the catalytic reaction is performed in standard conditions (1 atm and 273.15 K), <u>calculate</u> the TOF (min⁻¹) by considering the volume of the hydrogen gas generated in the hydrolysis of BNH₆, and <u>in terms of only the Pt atoms</u> in the CuPt/C catalyst.

As a result of detailed crystal analysis of a synthesized Cu_xPt_y alloy nanoparticle (the subscripts indicate molar percentages of the atoms in the alloy structure), it was determined that the fcc unit cell was formed by Pt atoms and the Pt atoms on the face of the fcc unit cell are supposed to be replaced with Cu atoms to form Cu_xPt_y displacement alloy nanoparticles. According to this information, answer the following questions.

- **8.15** Determine the composition of the alloy nanoparticles by finding x and y in the Cu_xPt_y alloy composition.
- **8.16** Sketch the shape of the described crystal unit cell of Cu_xPt_y alloy nanoparticles 2.0pt by showing the placement of atoms on the unit cell.
- 8.17 Another alloy has a Cu_2Pt_1 composition. Assume that this alloy also has an fcc unit cell with an edge length of 380 pm, but that the Cu and Pt atoms are randomly distributed in the atomic positions. **Calculate** the density of this alloy in g/cm^3 .

A8-1

Israel (Israel)

Boron Compounds and Hydrogen Storage

8.1 (3.0 pt)		
9.2 (2.0 m/)		
8.2 (3.0 pt)		
8.3 (4.0 pt)		
3.3 (4.0 pt)		
8.4 (4.0 pt)		

8.5 (4.0 pt)		
8.6 (4.0 pt)		
. ,		
9.7 (6.0 4)		
8.7 (6.0 pt)		
	I	
B ₃ O ₆ ³⁻	Boric acid	Boron nitride

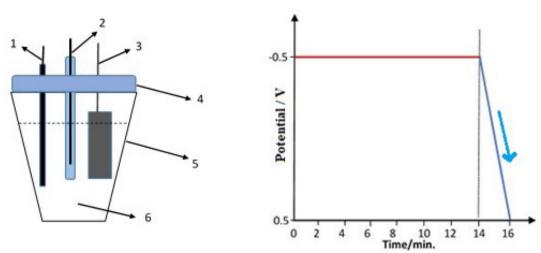
8.8 (3.0 pt)		
8.9 (2.0 pt)		
8.10 (3.0 pt)		

8.11 (2.0 pt)
☐ It gets longer because there will be π -back donation from BH $_3$ to CO. ☐ It gets longer because CO donates π -bonding electrons to BH $_3$
\square No or only small change on it, because CO donates mainly its non-bonding electrons to BH $_3$ \square It gets shorter because CO donates π^* anti-bonding electrons to BH $_3$.
8.12 (4.0 pt)
8.13 (4.0 pt)
8.14 (4.0 pt)

8.15 (2.0 pt)	
8.16 (2.0 pt)	
8.17 (4.0 pt)	

Q9-1

Israel (Israel)


Quantification of Heavy Metal Ions

For the quantitative analysis of heavy metal ions in a factory's wastewater pool, the following steps have been applied by an analyzer at 298 K:

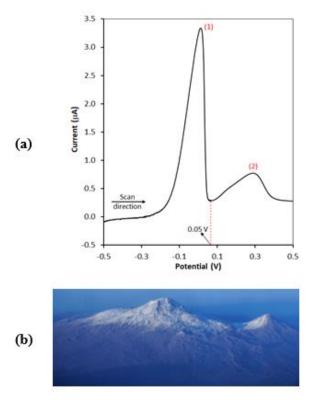
Step 1) Five samples of 10 mL (each) were obtained from different regions of a wastewater pool, mixed together in a 100 mL beaker, and then stirred for 5 minutes using a magnetic stirrer.

Step 2) 10 mL of sample solution was taken from the 100 mL beaker (from step 1) and 142 mg of Na_2SO_4 was added while stirring, followed by transfer to a three-electrode cell as seen in Figure **1a**. In this electrochemical cell, Pt wire, Ag/AgCl (3 M KCl), and Pt foil served as the working, reference, and counter electrodes, respectively.

Step 3) These electrodes were connected to a potentiostat and a constant potential of –0.50 V vs. Ag/AgCl for 14 minutes was applied as seen in Figure **1b** (horizontal line). It is assumed that 14 min is sufficient to complete the expected electrochemical reactions.

Figure 1a) (**left image**) Electrochemical cell design; 1) Working electrode (Pt wire); 2) reference electrode (Ag/AgCl, 3M KCl); 3) counter electrode (Pt foil); 4) cell cover; 5) electrochemical cell; 6) 10 mL of sample solution.

Figure 1b) (right image) Potential change of working electrode as a function of time. y-axis: potential/V vs Aq/AqCl, x-axis: time/min.


Step 4) The electrodes were rinsed with distilled water, placed into another electrochemical cell including 10 mL of 0.1 M H_2SO_4 solution, and potential was scanned between -0.50 and +0.50 V as seen in Figure **1b** (downward sloping line in 2 min, between 14 min and 16 min).

Current vs. potential data for this step are presented in Figure **2a**, which looks like an excellent view of *Mount Ararat (Ağrı Dağı*), the highest mountain in Turkey (Figure **2b**).

Q9-2

Israel (Israel)

Figure 2a) Plot of current vs. potential obtained in a 0.1 M H_2SO_4 solution, for a working electrode that was previously held at a constant potential of –0.50 V for 14 minutes in the 10 mL wastewater sample, as seen in Figure **1b** (horizontal line).

y-axis: current/ μ A, x-axis: potential/V vs Ag/AgCl.

Figure 2b) A view of Great and Little Ararat peaks.

Step 5) Another 10 mL of the sample solution prepared in *step 1* was taken and the processes explained in *steps 2 and 3* were applied in the same order. The electrodes were rinsed with distilled water and placed into 10 mL of 0.1 M H_2SO_4 solution. Then the potential of the working electrode was kept constant at +0.05 V for 14 min. It is assumed that 14 minutes is sufficient to complete the expected electrochemical reactions.

Step 6) After *step 5* was performed, the solution in the electrochemical cell was placed in a suitable oven for evaporation at 150 °C until dry solid was obtained.

Step 7) 5 mL of ethylenediaminetetraacetic acid (EDTA, H_4Y) (Figure **3**) solution was added to the solid obtained in step 6 and it was shaken untill everything dissolved. It is known that 1 mL of EDTA solution is equivalent to 3.85 mg $BaCO_3$.

Then, pH of the solution was adjusted to 10.0. Excess EDTA was titrated with standard 0.0010 M Ni(NO₃)₂ solution and it was observed that 95.60 mL of Ni(NO₃)₂ solution was consumed up to the endpoint.

Q9-3

Israel (Israel)

$$\begin{array}{c|c} O & & \\ O & &$$

Figure 3. Chemical structure of EDTA (H_4Y).

- In water saturated with H₂S, the equilibrium concentration of [H₂S] is 0.1 M.
- $K_{sp}(NiS) = 4.0 \times 10^{-20}$; $K_{sp}(CuS) = 1.0 \times 10^{-36}$
- $K_{a1}(H_2S) = 9.6 \times 10^{-8}$; $K_{a2}(H_2S) = 1.3 \times 10^{-14}$

Reaction	E°/V (at 298 K)
$-$ 2H ₂ O _(l) + 2e ⁻ \rightarrow H _{2(g)} + 2OH ⁻ _(aq)	-0.83
$\operatorname{Ni}^{2+}{}_{(aq)}$ + $2e^- \rightarrow \operatorname{Ni}_{(s)}$	-0.24
$2H^{+}_{(aq)} + 2e^{-} \rightarrow H_{2(g)}$	0.00
$Cu^{2+}{}_{(aq)}$ + $2e^- \rightarrow Cu_{(s)}$	+0.34
$Ag^+_{(aq)}$ + $e^ \to$ $Ag_{(s)}$	+0.80
$O_{2(g)}$ + $4H^{+}_{(aq)}$ + $4e^{-} \rightarrow 2H_{2}O_{(l)}$	+1.23

- **9.1** Which of the processes (in the answer sheets) can be considered for peak 1 and 5.0pt peak 2 in Figure **2a**? **Tick** the correct box on the answer sheets.
- 9.2 Which of the statements (in the answer sheets) is expected, if a potential of –1.2 5.0pt V is applied instead of –0.5 V, at the first step (horizontal line) in Figure 1b? <u>Tick</u> the correct box on the answer sheet.
- 9.3 <u>Calculate</u> the scan rate of the data presented in Figure 2a in mV/s at 298 K. 8.0pt

The potential of the following cell is measured as 0.437 V.

 Pt,H_2 (0.92 bar)|HCl (1.50×10⁻² M), AgCl (sat)|Ag

- 9.4 <u>Calculate</u> the <u>standard</u> electrode potential (V) of the half-cell reaction: 16.0pt $AgCl_{(s)} + e^- \rightarrow Ag_{(s)} + Cl_{(aq)}^-$ at 298 K. *Note*: You must show all works.
- **9.5** What is the main purpose of step 5 in this analysis? <u>Tick</u> the correct box on the 5.0pt answer sheets.

9.6 <u>Write</u> net ionic equations for the complexation and the back titration reaction 6.0pt of *step* 7 on the answer sheet.

25.0pt

9.7 Calculate Ni²⁺ concentration in the wastewater of the factory, in *mg/L*. *Note:* You must show all works.

9.8 <u>Calculate</u> the minimum pH value required for starting the precipitation of Ni²⁺ 30.0pt ions from the solution obtained in *step 5*, by bubbling H₂S gas until saturation. If you cannot solve question 9.7, use 20 *mg/L Ni*²⁺ *sample* for this question. *Note:* You must show all works.

Quantification of Heavy Metal Ions

0 1	$(5.0 \mathrm{pt})$
9.1	(5.0 pt)
	<u>Peak 1:</u> electrochemical reduction of Ni , <u>Peak 2:</u> electrochemical reduction of Cu
	<u>Peak 1:</u> electrochemical reduction of Cu , <u>Peak 2:</u> electrochemical reduction of Ni
	<u>Peak 1:</u> electrochemical reduction of Ni , <u>Peak 2:</u> electrochemical oxidation of Cu
	Peak 1: electrochemical oxidation of Ni , Peak 2: electrochemical oxidation of Cu
	<u>Peak 1:</u> electrochemical oxidation of Cu , <u>Peak 2:</u> electrochemical oxidation of Ni
9.2	$(5.0 \mathrm{\ pt})$
	NO evolution
	NO ₂ evolution
	Nitrogen evolution
	Oxygen evolution
	Hydrogen evolution
9.3	$(8.0 \mathrm{pt})$
Shov	v your calculation:
Scan	rate = mV/s
Jean	101C 111V/3

9.4 (16.0 pt)
Show your calculation:
Standard electrode potential =V
Standard electrode potential
9.5 (5.0 pt)
☐ Modification of Pt wire with Ni–Cu alloy film
☐ Modification of Pt wire with Ni film
☐ Electrochemical stripping of both Cu and Ni from Cu–Ni-modified Pt wire to the solution
☐ Electrochemical stripping of Cu from Cu–Ni-modified Pt wire to the solution
☐ Electrochemical stripping of Ni from Cu–Ni-modified Pt wire to the solution
9.6 (6.0 pt)
Complexation:
Back titration:
BACK UITATION.

9.7 (25.0 pt)

Show your calculation:			
Ni ²⁺ concentration: mg/L:			

9.8 (30.0 pt)

Show your calculation:

Minimum pH value:		