52nd IChO 2020
International Chemistry Olympiad
Istanbul, Turkey

60 COUNTRIES
166 ACADEMICS
235 FUTURE SCIENTIST

23.07.2020-29.07.2020
Problems & Solutions

52nd IChO 2020
International Chemistry Olympiad

Istanbul, Turkey

CHEMISTRY FOR A BETTER TOMORROW

July 25, 2020
Instructions

- Only write with pen. Your calculator should be non-programmable.
- This examination has 9 problems.
- You will have 5 hours to solve the exam.
- Begin only when the START command is given.
- All results must be written in the appropriate boxes in pen in the designated areas on the answer sheets. Use the back of the exam sheets if you need scratch paper. Remember that answers written outside the answer boxes will not be graded.
- Write relevant calculations in the appropriate boxes when necessary. Full marks will be given for correct answers only when your work is shown.
- The invigilator will announce a 30-minute warning before the Stop command.
- You must stop working when the STOP command is given. Failure to stop writing will lead to the nullification of your exam.
- The official English version of this examination is available on request only for clarification.

- You are not allowed to leave your working place without permission. If you need any assistance (broken calculator, need to visit a restroom, etc), raise hand and wait until an invigilator arrives.

GOOD LUCK!
Problems & Grading Information

<table>
<thead>
<tr>
<th>Problem</th>
<th>Title</th>
<th>Total Score</th>
<th>% of Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Two Beauties of Turkey: the Van Cat and the Ankara Cat</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>A Tale of a Reactive Intermediate</td>
<td>77</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>(±)-Coerulescine</td>
<td>51</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Symmetry Does Matter!</td>
<td>66</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Konya, Carrot, Beta-Carotene, Vitamin-A, Immune System, Vision</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Thermodynamics through an Interstellar Journey</td>
<td>80</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Phthalocyanines</td>
<td>85</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>Boron Compounds and Hydrogen Storage</td>
<td>58</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Quantification of Heavy Metal Ions</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>641</td>
<td>100</td>
</tr>
</tbody>
</table>
Table of Contents

Authors .. 4
Physical Constants and Equations .. 5
Periodic Table of Elements .. 6
1H-NMR Chemical Shifts ... 7
Typical Coupling Constants .. 7
13C-NMR Chemical Shifts ... 8
IR Absorption Frequency Table ... 8
Problem 1. Two Beauties of Turkey: the Van Cat and the Ankara Cat 10
Problem 2. A Tale of a Reactive Intermediate ... 17
Problem 3. (\pm)-Coerulescine .. 27
Problem 4. Symmetry Does Matter! .. 35
Problem 6. Thermodynamics through an Interstellar Journey ... 51
Problem 7. Phthalocyanines .. 64
Problem 8. Boron Compounds and Hydrogen Storage .. 73
Problem 9. Quantification of Heavy Metal Ions .. 83
Authors

ALANYALIOĞLU, Murat, Atatürk University
AYDOĞAN, Abdullah, İstanbul Technical University
BURAT, Ayfer Kalkan, İstanbul Technical University
DAĞ, Ömer, Bilkent University
DAŞTAN, Arif, Atatürk University
KILIÇ, Hamdullah, Atatürk University
METİN, Önder, Koç University
ÖZTÜRK, Turan, İstanbul Technical University
SARAÇOĞLU, Nurullah, Atatürk University
TÜRKMEN, Yunus Emre, Bilkent University
ÜNLÜ, Caner, İstanbul Technical University
YILMAZ, İsmail, İstanbul Technical University
YURTSEVER, Mine, İstanbul Technical University

Editor: SARAÇOĞLU, Nurullah, Atatürk University
Physical Constants and Equations

Avogadro’s number, $N_A = 6.0221 \times 10^{23} \text{mol}^{-1}$
Boltzmann constant, $k_B = 1.3807 \times 10^{-23} \text{JK}^{-1}$
Universal gas constant, $R = 8.3145 \text{JK}^{-1}\text{mol}^{-1} = 0.08205 \text{atm L K}^{-1}\text{mol}^{-1}$
Speed of light, $c = 2.9979 \times 10^8 \text{ms}^{-1}$
Planck’s constant, $h = 6.6261 \times 10^{-34} \text{Js}$
Faraday’s constant, $F = 9.6485 \times 10^4 \text{C mol}^{-1}$
Mass of electron, $m_e = 9.1093 \times 10^{-31} \text{kg}$
Standard pressure, $P = 1 \text{ bar} = 10^5 \text{Pa}$
Atmospheric pressure, $P_{atm} = 1.01325 \times 10^5 \text{Pa} = 760 \text{mmHg} = 760 \text{torr}$
Zero of the Celsius scale, 273.15 K
1 picometer (pm) = 10^{-12} m; 1Å = 10^{-10} m; 1 nanometer (nm) = 10^{-9} m
1 eV = $1.6 \times 10^{-19} \text{ J}$
1 cal = 4.184 J
1 amu = $1.6605 \times 10^{-27} \text{ kg}$
Charge of an electron: $1.6 \times 10^{-19} \text{ C}$
Ideal gas equation: $PV = nRT$
Enthalpy: $H = U + PV$
Gibbs free energy: $G = H - TS$
$\Delta G = \Delta G^0 + RTlnQ$
$\Delta_r G^0 = -RTlnK = -nF E^0_{\text{cell}}$
Entropy change:
$\Delta S = \frac{q_{\text{rev}}}{T}$, where q_{rev} is heat for the reversible process

$\Delta S = nRln \frac{V_2}{V_1}$ (for isothermal expansion of an ideal gas)
Nernst equation:
$E = E^0 + \frac{RT}{nF}ln \frac{[\text{oxidation}]}{[\text{reduction}]}$
Energy of a photon:
$E = \frac{hc}{\lambda}$
Integrated rate law
Zeroth-order: $[A] = [A]_0 - kt$
First-order: $ln[A] = ln[A]_0 - kt$
Second order: $\frac{1}{[A]} = \frac{1}{[A]_0} + kt$
Arrhenius equation: $k = Ae^{-E_a/RT}$
Equation of linear calibration curve: $y = mx + n$
Lambert–Beer equation: $A = \epsilon lc$
Periodic Table of Elements

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Symbol</th>
<th>Atomic Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1.008</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>4.003</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>6.94</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>9.01</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>22.99</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>24.31</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>39.10</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>40.08</td>
</tr>
<tr>
<td>21</td>
<td>Sc</td>
<td>44.96</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>47.87</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>50.94</td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>52.00</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>54.94</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>55.85</td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>58.93</td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>58.69</td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>63.55</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>65.38</td>
</tr>
<tr>
<td>31</td>
<td>Ga</td>
<td>69.72</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td>72.63</td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td>74.92</td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td>78.96</td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td>80.91</td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td>84.82</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>85.47</td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>87.62</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>88.91</td>
</tr>
<tr>
<td>40</td>
<td>Zr</td>
<td>91.22</td>
</tr>
<tr>
<td>41</td>
<td>Nb</td>
<td>92.91</td>
</tr>
<tr>
<td>42</td>
<td>Mo</td>
<td>95.95</td>
</tr>
<tr>
<td>43</td>
<td>Tc</td>
<td>98.00</td>
</tr>
<tr>
<td>44</td>
<td>Ru</td>
<td>101.10</td>
</tr>
<tr>
<td>45</td>
<td>Rh</td>
<td>102.94</td>
</tr>
<tr>
<td>46</td>
<td>Pd</td>
<td>106.42</td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>107.87</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>112.42</td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>114.84</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>118.71</td>
</tr>
<tr>
<td>51</td>
<td>Sb</td>
<td>121.76</td>
</tr>
<tr>
<td>52</td>
<td>Te</td>
<td>127.60</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>126.90</td>
</tr>
<tr>
<td>54</td>
<td>Xe</td>
<td>131.30</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>132.90</td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>137.30</td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td>138.90</td>
</tr>
<tr>
<td>58</td>
<td>Ce</td>
<td>140.10</td>
</tr>
<tr>
<td>59</td>
<td>Pr</td>
<td>140.90</td>
</tr>
<tr>
<td>60</td>
<td>Nd</td>
<td>144.20</td>
</tr>
<tr>
<td>61</td>
<td>Pm</td>
<td>145.00</td>
</tr>
<tr>
<td>62</td>
<td>Sm</td>
<td>150.40</td>
</tr>
<tr>
<td>63</td>
<td>Eu</td>
<td>152.00</td>
</tr>
<tr>
<td>64</td>
<td>Gd</td>
<td>157.30</td>
</tr>
<tr>
<td>65</td>
<td>Tb</td>
<td>158.90</td>
</tr>
<tr>
<td>66</td>
<td>Dy</td>
<td>162.50</td>
</tr>
<tr>
<td>67</td>
<td>Ho</td>
<td>164.90</td>
</tr>
<tr>
<td>68</td>
<td>Er</td>
<td>167.30</td>
</tr>
<tr>
<td>69</td>
<td>Tm</td>
<td>168.90</td>
</tr>
<tr>
<td>70</td>
<td>Yb</td>
<td>173.00</td>
</tr>
<tr>
<td>71</td>
<td>Lu</td>
<td>175.00</td>
</tr>
<tr>
<td>89</td>
<td>Ac</td>
<td>227.00</td>
</tr>
</tbody>
</table>

Copyright © 2018 International Union of Pure and Applied Chemistry

Reproduced by permission of the International Union of Pure and Applied Chemistry
1H-NMR Chemical Shifts

- aryl NH, aryl NH₂
- amide NH, NH₂
- alkyl NH, NH₂
- aryl OH
- alkyl OH

![Chemical Shift Chart]

Typical Coupling Constants

- **Geminal**
 - $^2J = 0$ Hz (homotopic hydrogens)
 - $^2J = 0.5–3$ Hz

- **Vicinal**
 - $^3J = 2–12$ Hz (depends on dihedral angle)
 - $^3J = 6–8$ Hz

- **Cis**
 - $^3J = 7–12$ Hz

- **Trans**
 - $^3J = 12–18$ Hz

- **Allylic**
 - $^3J = 3–11$ Hz (depends on dihedral angle)

- **Ortho**
 - $^4J = 1–3$ Hz

- **Para**
 - $^4J = 0–1$ Hz
IR Absorption Frequency Table

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Type of Vibration</th>
<th>Absorption Frequency Region (cm$^{-1}$)</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O–H</td>
<td>(stretch, H-bonded)</td>
<td>3600–3200</td>
<td>strong, broad</td>
</tr>
<tr>
<td></td>
<td>(stretch, free)</td>
<td>3700–3500</td>
<td>strong, sharp</td>
</tr>
<tr>
<td></td>
<td>(stretch)</td>
<td>1150–1050</td>
<td>strong</td>
</tr>
<tr>
<td>Alkane</td>
<td>stretch</td>
<td>3000–2850</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td>bending</td>
<td>1480–1350</td>
<td>variable</td>
</tr>
<tr>
<td>Alkene</td>
<td>stretch</td>
<td>3100–3010</td>
<td>medium</td>
</tr>
<tr>
<td></td>
<td>bending</td>
<td>1000–675</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td>C=C</td>
<td>1680–1620</td>
<td>variable</td>
</tr>
<tr>
<td>Alkyl Halide</td>
<td>stretch</td>
<td>1400–1000</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td>C–Cl</td>
<td>800–600</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td>C–Br</td>
<td>600–500</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td>C–I</td>
<td>500</td>
<td>strong</td>
</tr>
<tr>
<td>Alkyne</td>
<td>stretch</td>
<td>3300</td>
<td>strong, sharp</td>
</tr>
<tr>
<td></td>
<td>C≡C</td>
<td>2260–2100</td>
<td>variable, not present in symmetrical alkynes</td>
</tr>
<tr>
<td>Amine</td>
<td>stretch</td>
<td>3500–3300</td>
<td>medium (primary amines have two bands; secondary amines have one band, often very weak)</td>
</tr>
<tr>
<td>Bond Type</td>
<td>Mode</td>
<td>Wavenumber Range</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>----------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>C–N</td>
<td>stretch</td>
<td>1360–1080</td>
<td>medium-weak</td>
</tr>
<tr>
<td>N–H</td>
<td>bending</td>
<td>1600</td>
<td>medium</td>
</tr>
<tr>
<td>Aromatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C–H</td>
<td>stretch</td>
<td>3100–3000</td>
<td>medium</td>
</tr>
<tr>
<td>C=C</td>
<td>stretch</td>
<td>1600–1400</td>
<td>medium-weak, multiple bands</td>
</tr>
<tr>
<td>Carbonyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>stretch</td>
<td>1820–1670</td>
<td>strong</td>
</tr>
<tr>
<td>Acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>stretch</td>
<td>1725–1700</td>
<td>strong</td>
</tr>
<tr>
<td>O–H</td>
<td>stretch</td>
<td>3300–2500</td>
<td>strong, very broad</td>
</tr>
<tr>
<td>C–O</td>
<td>stretch</td>
<td>1320–1210</td>
<td>strong</td>
</tr>
<tr>
<td>Aldehyde</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>stretch</td>
<td>1740–1720</td>
<td>strong</td>
</tr>
<tr>
<td>C–H</td>
<td>stretch</td>
<td>2850–2820 & 2750–2720</td>
<td>medium, two peaks</td>
</tr>
<tr>
<td>Amide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>stretch</td>
<td>1690–1640</td>
<td>strong</td>
</tr>
<tr>
<td>N–H</td>
<td>bending</td>
<td>3500–3100</td>
<td>unsubstituted have two bands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1640–1550</td>
<td></td>
</tr>
<tr>
<td>Anhydride</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>stretch</td>
<td>1830–1800 &1775–1740</td>
<td>two bands</td>
</tr>
<tr>
<td>Ester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=O</td>
<td>stretch</td>
<td>1750–1735</td>
<td>strong</td>
</tr>
<tr>
<td>C–O</td>
<td>stretch</td>
<td>1300–1000</td>
<td>two bands or more</td>
</tr>
<tr>
<td>Ketone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acyclic</td>
<td>stretch</td>
<td>1725–1705</td>
<td>strong</td>
</tr>
<tr>
<td>cyclic</td>
<td>stretch</td>
<td>3-membered - 1850</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td>stretch</td>
<td>4-membered - 1780</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td>stretch</td>
<td>5-membered - 1745</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td>stretch</td>
<td>6-membered - 1715</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td>stretch</td>
<td>7-membered - 1705</td>
<td>strong</td>
</tr>
<tr>
<td>α,β-unsaturated</td>
<td>stretch</td>
<td>1685–1665</td>
<td>strong</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>conjugation moves absorptions to lower wavenumbers</td>
</tr>
<tr>
<td>aryketone</td>
<td></td>
<td>1700–1680</td>
<td>strong</td>
</tr>
<tr>
<td>Ether</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C–O</td>
<td>stretch</td>
<td>1300–1000 (1150–1070)</td>
<td>strong</td>
</tr>
<tr>
<td>Nitrile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C≡N</td>
<td>stretch</td>
<td>2260–2210</td>
<td>medium</td>
</tr>
<tr>
<td>Nitro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N–O</td>
<td>stretch</td>
<td>1560–1515 & 1385–1345</td>
<td>strong, two bands</td>
</tr>
</tbody>
</table>
Problem 1. Two Beauties of Turkey: the Van Cat and the Ankara Cat

The most beautiful of cats, the Van cat is a pure breed living only in Lake Van basin. Another endemic cat breed is the Ankara cat. They are called Angora cats. Their most important feature is their two different eye colors.

Van cat Ankara cat Nepeta cataria (catnip)

Just like people, cats can sometimes be stressed and angry. Just as people are made happy by melatonin, the stress of cats can be reduced and they can be made happy thanks to a natural product. Nepetalactone is an organic compound isolated from the plant catnip (Nepeta cataria), which acts as a cat attractant. Nepetalactone is a ten-carbon bicyclic monoterpenoid compound derived from isoprene with two fused rings: a cyclopentane and a lactone.
Total synthesis of nepetalactone:

\[
\begin{align*}
\text{2} & \xrightarrow{1) \text{NaOEt}} \text{A} & \xrightarrow{1) \text{HgSO}_4, \text{H}_2\text{O}^+} & \xrightarrow{2) \Delta} \text{B} & \xrightarrow{\text{LDA}} & \xrightarrow{\Delta} \text{C} \\
\text{4} & \xrightarrow{1) \text{O}_3} \xrightarrow{2) \text{Me}_2\text{S}} \text{E} & \xrightarrow{1) \text{NaBH}_4} & \xrightarrow{2) \text{Ac}_2\text{O}} \text{D} & \xrightarrow{\text{NaOEt}} & \xrightarrow{\text{PhCHO}} \text{3} \\
\text{F} & \xrightarrow{1) \text{NaOH, H}_2\text{O}} \xrightarrow{2) \text{NaI}_2} \text{G} & \xrightarrow{\text{CaCl}_2 / \Delta} & \xrightarrow{-\text{H}_2\text{O}} \text{1}
\end{align*}
\]

1.1. The above scheme describes the total synthesis of nepetalactone. **Draw** structures of A–G, without stereochemical details.

Hints:
- Compound A has strong and sharp band at 3300 cm\(^{-1}\) in the IR spectrum.
- A, B, and F are monocyclic, while C, D, E, and G are bicyclic compounds.
- F has one doublet at ~ 9.8 ppm in the \(^1\)H-NMR spectrum.
Reactions of nepetalactone:

The above scheme includes a few reactions of one of the enantiopure nepetalactone 1 isomers. Three of the reaction products (5, 6, and J) are used as insect repellents in industry.

1.2. For the relationship between 5 and 6, which of the following is/are true? Tick the box next to the correct answer(s) on your answer sheets.

☐ Enantiomers
☐ Diastereomers
☐ Identical
☐ Stereoisomers

Reaction of 1 with DDQ gives highly conjugated compound H. Also, thermal reaction of compound H with p-quinone gives I with molar mass of 226.28 g/mol.

1.3. Draw the structures of H, I, and J indicating stereochemistry.

Hints:
- During the formation of I, sequential pericyclic reactions and an oxidation reaction (due to the presence of O₂) take place, and a well-known gas forms during the reaction.
- J has a strong and very broad band between 3300 and 2500 cm⁻¹ in the IR spectrum.
Solution:

Total synthesis of nepetalactone:

1.1. Draw the structures of A–G without stereochemical details.

A

2 points for correct answer.

1 point if propargylation position is not correct. Zero points for allene structure as it is not consistent with hints given.

B

2 points for correct answer.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **C** | \[
\begin{array}{c}
\text{2 points for correct answer.}
\text{1 point for unconjugated enone.}
\end{array}
\] | **D** |
| | \[
\begin{array}{c}
\text{2 points for correct answer.}
\text{Both } E \text{ and } Z \text{ isomers will receive full points}
\text{1 point if condensation position is not correct.}
\end{array}
\] | |
| **E** | \[
\begin{array}{c}
\text{2 points for correct answer.}
\end{array}
\] | **F** |
| | \[
\begin{array}{c}
\text{2 points for correct answer.}
\end{array}
\] | |
| **G** | \[
\begin{array}{c}
\text{2 points for correct answer.}
\text{1 point for enol form of } F.
\end{array}
\] | |
Reactions of nepetalactone:

1.2. For the relationship between 5 and 6, which of the following is/are true? Tick the box next to the correct answer(s).

<table>
<thead>
<tr>
<th></th>
<th>Enantiomers</th>
<th>Diastereomers</th>
<th>Same compounds</th>
<th>Stereoisomers</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☒</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 points (total) for the two correct answers (2 points for each correct answer).
2 points (total) if there is one mistake.
0 points if there are more than one mistakes.

1.3. Draw the structures of H, I, and J indicating stereochemistry.

<table>
<thead>
<tr>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 points for correct answer.
<table>
<thead>
<tr>
<th></th>
<th>1 point for a conjugated oxidation product via a five-membered ring.</th>
</tr>
</thead>
</table>
| | 2 points for correct answer.
1 point without stereochemical detail. |
Problem 2. A Tale of a Reactive Intermediate

Arynes constitute a special class of reactive intermediates. The first experimental evidence for the structure of an aryne (benzyne) was demonstrated in 1953 via the elegant labeling experiments by John D. Roberts and coworkers.

In one such experiment, chlorobenzene, whose carbon at position 1 was labeled with radioactive 14C, was reacted with KNH$_2$ in liquid NH$_3$ to give nearly equal amounts of isotopic isomers A and B along with the inorganic salt C. This reaction proceeds via the formation of aryne intermediate D.

![Chemical Reaction](image)

2.1. **Draw** the structure of A, B and D, and provide the formula of C. Indicate the position(s) of 14C-labeled carbon(s) with an asterisk (*) whenever applicable.

Analysis of the 14C-labeled product(s) was achieved via degradation experiments (the 14C-labeled carbons are not shown on the structures). Radioactivities of the intermediates and final products were examined.
2.2. **Tick** the appropriate boxes on the answer sheet for the intermediates and products that you expect to exhibit radioactivity.

<table>
<thead>
<tr>
<th>Considering only A:</th>
<th>Considering only B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Compound 1</td>
<td>☐ Compound 1</td>
</tr>
<tr>
<td>☐ BaCO₃ (Batch 1)</td>
<td>☐ BaCO₃ (Batch 1)</td>
</tr>
<tr>
<td>☐ Compound 2</td>
<td>☐ Compound 2</td>
</tr>
<tr>
<td>☐ BaCO₃ (Batch 2)</td>
<td>☐ BaCO₃ (Batch 2)</td>
</tr>
</tbody>
</table>

With the aim of facilitating aryne formation, Kobayashi and co-workers developed a fluoride-induced aryne generation protocol. Using this method, benzene derivative 3 is reacted with furan (4) in the presence of CsF, resulting in the formation of E, F, and G.

![Chemical reaction diagram](image-url)
• Combustion analysis of E revealed the following atom content: 75.8% carbon, 5.8% hydrogen, and 18.4% oxygen.
• E does not have a proton that is exchangeable with D₂O in ¹H-NMR spectroscopy.
• F is an ionic compound.

2.3. **Determine** the structures of E, F, and G (without stereochemical details).

In the absence of a nucleophile or a trapping agent, arynes can undergo [2+2]-type cyclodimerization or [2+2+2]-type cyclotrimerization reactions under suitable conditions. The aryne derivative that is obtained when 3 is treated with one equivalent of CsF in MeCN can give, in principle, four different dimerization and trimerization products (H–K).

• H has two planes of symmetry.
• I is expected to exhibit 21 signals in its ¹³C-NMR spectrum.
• I and J both exhibit an m/z value of 318.1 in their mass spectra.

2.4. **Determine** the structures of H–K.

When 5 is reacted with β-ketoester 6 in the presence of 2 equivalents of CsF at 80 °C, L is obtained as the major product. The ¹H-NMR and ¹³C-NMR data for L, in CDCl₃, are as follows:

• ¹H-NMR: δ 7.79 (dd, J = 7.6, 1.5 Hz, 1H), 7.47–7.33 (m, 2H), 7.25–7.20 (m, 1H), 3.91 (s, 2H), 3.66 (s, 3H), 2.56 (s, 3H) ppm.

• ¹³C-NMR: δ 201.3, 172.0, 137.1, 134.4, 132.8, 132.1, 130.1, 127.5, 51.9, 40.2, 28.8 ppm.

2.5. **Determine** the structure of L.

2.6. In the reaction shown in task 2.5, which of the statement(s) in the answer sheet describe(s) the function of CsF?

• The pKₐ values of HF and β-ketoester 6 in dimethyl sulfoxide (DMSO) are about 15 and 14, respectively.
☐ F⁻ hydrolyzes the trifluoromethanesulfonate (O₃SCF₃) group of 5.
☐ F⁻ attacks the –SiMe₃ group of 5.
☐ F⁻ acts as a base to deprotonate 6.
☐ F⁻ acts as a nucleophile and attacks the ester group of 6.

Diazapyrone derivative 8 was shown to be a useful reactant for the construction of a variety of cyclic frameworks. Its preparation from phenylglyoxylic acid (7) and its use in two different reactions are described below.

- Q and T are gases under ambient conditions.
- O and P are constitutional isomers.
- Q does not have any signals in its IR spectrum.
- Heating 1 mol of R at 85 °C generates 1 mol of reactive intermediate S.
- Reaction of 8 with two equivalents of S gives U, Q, and T.

Note:
equiv= equivalent
cat= catalyst

2.7. **Determine** the structures of M–U.
Solution:

\[\text{苯}
\quad \text{KNH}_2
\quad \text{NH}_3(\text{aq}) \rightarrow \text{A} \quad \text{B} \quad \text{KCl} \]

2.1. **Draw** the structures of **A**–**D**. Indicate the position(s) of \(^{14}\text{C}\)-labeled carbon(s) with an asterisk (*) whenever applicable.

A

\[
\begin{align*}
\text{苯}^*\text{NH}_2
\end{align*}
\]

2 points.

1 point if labeled carbon is not shown or if its position is incorrect.

B

\[
\begin{align*}
\text{苯}^*\text{NH}_2
\end{align*}
\]

2 points.

1 point if labeled carbon is not shown or if its position is incorrect.

If unlabeled aniline is given as an answer for both **A** and **B**, then only 1 point will be given in total for **A** and **B**.

C

\[
\begin{align*}
\text{KCl} \\
\text{or} \\
\text{K}^+ \text{:} \text{Cl} : \\
\text{或}
\end{align*}
\]

1 point.

0 points if only cation or anion is written.

D

\[
\begin{align*}
\text{苯}^*
\end{align*}
\]

2 points.

2 points for different resonance forms of **A** including the circle representation for aromaticity.

1 point if labeled carbon is not shown or if its position is incorrect.

2.2. **Tick** the appropriate boxes on the answer sheet for the intermediates and products that you expect to exhibit radioactivity.

<table>
<thead>
<tr>
<th>Considering only A:</th>
<th>Considering only B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Compound 1</td>
<td>☒ Compound 1</td>
</tr>
<tr>
<td>☒ BaCO(_3) (Batch 1)</td>
<td>☐ BaCO(_3) (Batch 1)</td>
</tr>
<tr>
<td>☐ Compound 2</td>
<td>☐ Compound 2</td>
</tr>
</tbody>
</table>
BaCO₃ (Batch 2)

Solution: only BaCO₃ (Batch 1)

3 points for the correct answer.
0 points for one or more mistakes.

BaCO₃ (Batch 2)

Solution: Compound 1 and BaCO₃ (Batch 2)

6 points (total) for the two correct answers (3 points for each correct answer).
3 points (total) if there is one mistake.
0 points if there are more than one mistakes.

Note: The answer to this task will depend on the student’s structural assignment of compounds A and B in task 2.1

2.3. **Determine** the structures of E, F, and G (without stereochemical details).

E

4 points.
2 points if the product of [2+2] reaction between aryne and furan is written.
0 points if ring-opened naphthol product is written.

F

CsO₃SCF₃ or Cs⁺CF₂SO₃⁻ or CsOTf

2 points.

G

(CH₃)₃SiF or Me₃SiF

2 points.
2.4. **Determine** the structures of H–K.

![H structure](image)

4 points.

![I structure](image)

4 points.

![J structure](image)

4 points.

![K structure](image)

4 points.

2.5. **Determine** the structure of L.

![L structure](image)

5 points

The following isomer will also receive full points:
2.6. In the reaction shown in task 2.5, which of the statement(s) in the answer sheet describe(s) the function of CsF?

☐ F⁻ hydrolyzes the trifluoromethanesulfonate (O₃SCF₃) group of 5.
☒ F⁻ attacks the –SiMe₃ group of 5.
☒ F⁻ acts as a base to deprotonate 6.
☐ F⁻ acts as a nucleophile and attacks the ester group of 6.

The correct statements are the 2nd and 3rd statements.

4 points (total) for the two correct answers (2 points for each correct answer).
2 points (total) if there is one mistake.
0 points if there are more than one mistakes.
2.7. **Determine** the structures of M–U.

- **M**
 - 4 points.
 - The following tautomer will receive full points:

- **N**
 - 4 points.
 - The following tautomer will receive full points:
<table>
<thead>
<tr>
<th>O and P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Chemical Structure] and ![Chemical Structure]</td>
<td>(\text{N}_2)</td>
</tr>
<tr>
<td>6 points (3 points for each isomer)</td>
<td>2 points.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>([N_2^+]_2\text{CO}_2^-)</td>
<td>![Chemical Structure]</td>
</tr>
<tr>
<td>3 points.</td>
<td>3 points.</td>
</tr>
<tr>
<td>3 points will be given for the following answers:</td>
<td></td>
</tr>
<tr>
<td>![Chemical Structure] or ![Chemical Structure]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CO}_2)</td>
<td>![Chemical Structure]</td>
</tr>
<tr>
<td>2 points.</td>
<td>4 points.</td>
</tr>
<tr>
<td>2 points for the following answer:</td>
<td></td>
</tr>
</tbody>
</table>
Problem 3. (±)-Coerulescine

A spiro compound is typically an organic compound containing rings linked together by one common atom (spiroatom) as carbon atom with bold in figure below. The spiro[pyrrolidin-3,3′-oxindole] ring system is a structural framework incorporated in several cytostatic alkaloids and unnatural compounds. Coerulescine (1) and horsfiline are the simplest prototype members of this subfamily that can be synthesized by the route shown below.

Claisen rearrangement, which is a [3,3]-sigmatropic rearrangement, is a powerful carbon–carbon bond-forming reaction in which an allyl vinyl ether is converted thermally to an unsaturated carbonyl compound as shown in the Scheme below. When compound A is heated, it undergoes Claisen rearrangement to give carbonyl compound B.

For this entire task, your answers can be given without any stereochemical details.
3.1. Draw the structures of A and B.

- A is an inseparable mixture of cis/trans isomers.
- B has IR absorption at 1726 cm\(^{-1}\).

3.2. Draw structures for C, D, E, and F.

- D–F have a bicyclic structure.
3.3. **Choose** the correct order of steps for the transformation of F to G.

- Imine formation, then reduction, then amidation
- Amidation, then imine formation, then reduction
- Reduction, then amidation, then imine formation

3.4. **Draw** structures for G and H (both spiro compounds).

3.5. **Draw** the structure of the intermediate produced by treatment with \(n \)-BuLi in the step \(H \to \text{coerulescine (1)} \).

Coerulescine (1), on treatment with \(N \)-bromosuccinimide (NBS), gives the bromo derivative, which upon heating with sodium methoxide in the presence of cuprous iodide gives **horsfiline** (I) in 60% yield.

3.6. **Choose** the correct structure for compound I consistent with the following selected \(^1H \)-NMR data: \(\delta \) 7.05 (d, \(J = 1.4 \) Hz, 1H), 6.78 (d, \(J = 8.0 \) Hz, 1H), 6.72 (dd, \(J = 8.0, 1.4 \) Hz, 1H) ppm.

3.7. When the allyl ether of 2 naphthol is heated a sigmatropic rearrangement is initiated. **Write** the structure of major product isolated from this reaction.
Solution:

\[
\text{CH}_2=\text{CHCH}_2\text{OCH}_2\text{PPh}_3\text{Cl} + \text{CH}_2=\text{CHCHO} \rightarrow \text{A} \rightarrow \text{B} \rightarrow \text{C} \rightarrow \text{D} \rightarrow \text{E} \rightarrow \text{F} \rightarrow \text{G} \rightarrow \text{H} \rightarrow \text{I} (\text{z}-\text{horsfiline})
\]
3.1. **Draw** the structures of A and B.

A

![Structure A](image)

4 points.

B

![Structure B](image)

4 points.

3.2. **Draw** structures for C, D, E, and F.

C

![Structure C](image)

4 points.

D

![Structure D](image)

4 points.

E

![Structure E](image)

4 points.

F

![Structure F](image)

4 points.

3 points will be given for the following answer: The following tautomer will receive full points:
3.3. **Choose** the correct reaction order for the transformation of F to G.

<table>
<thead>
<tr>
<th></th>
<th>Imine formation, then reduction, then amidation</th>
<th>Amidation, then imine formation, then reduction</th>
<th>Reduction, then amidation, then imine formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>4 points for correct answer.</td>
<td>0 points for incorrect answer.</td>
<td></td>
</tr>
</tbody>
</table>

3.4. **Draw** structures for G and H.

G

![G structure](image)

4 points.

H

![H structure](image)

4 points.

3.5. **Draw** the structure of the intermediate for the reaction with \(n\)-BuLi in the step H → coerulescine.

![Intermediate structures](image)

Regioselective reduction of carbonyl group can be achieved via lithiation of free NH.

5 points for the correct structure.
3.6. Choose the correct structure for compound I consistent with the following selected 1H-NMR data: δ 7.05 (d, $J = 1.4$ Hz, 1H), 6.78 (d, $J = 8.0$ Hz, 1H), 6.72 (dd, $J = 8.0, 1.4$ Hz, 1H) ppm.

Ha and Hb protons show AB system at 6.78 ppm (d, $J = 8.0$ Hz) and 6.72 ppm (dd, $J = 8.0, 1.4$ Hz).

NMR data are compatible with this structure, but not compatible with the possible ortho-substitute product.

5 points.

3.7. When the allyl ether of 2 naphthol is heated a sigmatropic rearrangement is initiated. Write the structure of major product isolated from this reaction.
5 points for the correct identification of major product.
3 points for keto-form (enone) of major product structure.
2 points for minor product structure.
1 points for keto-form (enone) of minor product structure.

The enone tautomer in which aromaticity lost in one ring for major product is less favored than the enol tautomer.
There are numerous reactions in organic chemistry that proceed through cyclic transition states and these are classified as pericyclic reactions. Woodward–Hoffmann rules, developed by Robert B. Woodward and Roald Hoffmann, are used to rationalize stereochemical aspects and the activation energy of pericyclic reactions.

Problem 4. Symmetry Does Matter!

There are numerous reactions in organic chemistry that proceed through cyclic transition states and these are classified as pericyclic reactions. Woodward–Hoffmann rules, developed by Robert B. Woodward and Roald Hoffmann, are used to rationalize stereochemical aspects and the activation energy of pericyclic reactions.

<table>
<thead>
<tr>
<th>Problem 4</th>
<th>Question</th>
<th>4.1</th>
<th>4.2</th>
<th>4.3</th>
<th>4.4</th>
<th>4.5</th>
<th>4.6</th>
<th>4.7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>16</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td></td>
<td>64</td>
</tr>
</tbody>
</table>

Woodward–Hoffmann rules

<table>
<thead>
<tr>
<th>Number of electrons</th>
<th>Electro cyclic reactions</th>
<th>Cycloadditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thermal (Δ)</td>
<td>Photochemical (hv)</td>
</tr>
<tr>
<td>4n</td>
<td>Conrotatory (con)</td>
<td>Disrotatory Disfavored Favored</td>
</tr>
<tr>
<td>(n = 1, 2, ..)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermal (Δ)</td>
</tr>
<tr>
<td>4n+2 (n = 1, 2, ..)</td>
<td>Disrotatory (dis)</td>
<td>Conrotatory Favored Disfavored</td>
</tr>
</tbody>
</table>

4.1. **Fill** in the table for reactions (i)–(iii) or products 2–5:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Product</th>
<th>[? + ?] cycloaddition</th>
<th>Δ or hv</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There are three possible benzotropone isomers. Although two of the benzotropone isomers were isolated, 3,4-benzotropone (I) has not been isolated. Its instability is attributed to the o-quinoidal structure of I because it has no sextet electron system in the benzene ring.

4.2. **Draw** the structures of stable benzotropone isomers A (with 6 signals in its 13C-NMR) and B (with 11 signals in its 13C-NMR).

4.3. When the following tetræne is reacted under photochemical conditions, symmetry-allowed product(s) of three different ring sizes can form according to the Woodward–Hoffmann rules. **Tick** the correct answer in each row.

![Diagram](image)

Prof. Dr. Aziz Sancar

The Nobel Prize in Chemistry 2015 was awarded jointly to the Turkish scientist Aziz Sancar, Swedish scientist Tomas Lindahl, and American scientist Paul Modrich for their “mechanistic studies of DNA repair”. Pyrimidine bases found in DNA may undergo a photochemical [2+2]-cycloaddition reaction (see above figure) with UV light that reaches a person’s skin, causing
damage to DNA, which may ultimately lead to skin cancer. The research by Professor Aziz Sancar focused on the DNA repair mechanism for this type of damage.

Thymine (T) is one of the nucleobases that can undergo such a photochemical reaction with UV light. Let us assume that we have a solution of free thymine that was subjected to UV irradiation.

![Chemical structure of thymine](image)

4.4. Considering stereochemistry, **draw** the structures of **all possible products** of this reaction between two free thymine (T) molecules. **Circle** the compound(s) which is/are chiral. Drawing only one enantiomer of an enantiomeric pair is sufficient. Please note that only C=C bonds participate in this reaction.

A broad range of halogenated derivatives of norbornadiene (N) are known in the literature. Tribromo-norbornadiene (C$_7$H$_5$Br$_3$) has six achiral isomers. Three of these isomers (6, 7, and 8) are given below.

![Chemical structures of norbornadiene and its derivatives](image)

4.5. How many signals do you expect from the 13C-NMR spectra of 6, 7, and 8? **Fill in** the following boxes.
4.6. **Draw** structures of the remaining achiral tribromo-norbornadiene (C\(_7\)H\(_3\)Br\(_3\)) isomers (C, D, and E) in addition to 6–8 over the given figures in the boxes.

![Structures of C, D, and E isomers]

The NMR spectrum of ether 9 is complex. Two MeO– groups are different as are all the hydrogen atoms on the rings. However, diphenol 10 has a very simple NMR spectrum and there are only three types of protons (marked as a, b, and c). A reasonable average structure responsible for all resonance structures and its symmetry is shown as 11.

![Structures of 9, 10, and 11]

4.7. How many signals do you expect from the \(^{13}\)C- and \(^1\)H-NMR spectra of 12 and 13?
Solution:

4.1. Fill in the table for reactions (i)–(iii) or products 2–5:

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Product</th>
<th>[? + ?] cycloaddition</th>
<th>Δ or hv</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>2</td>
<td>[10 + 10] ([6 + 6] is also acceptable).</td>
<td>hv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 points.</td>
<td>1 point.</td>
</tr>
<tr>
<td>ii</td>
<td>3</td>
<td>[8 + 2] ([4 + 2] is also acceptable).</td>
<td>Δ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 points.</td>
<td>1 point.</td>
</tr>
<tr>
<td>iii</td>
<td>4</td>
<td>[10 + 8] ([6 + 4] is also acceptable).</td>
<td>Δ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 points.</td>
<td>1 point.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>[10 + 8] ([6 + 4] is also acceptable).</td>
<td>Δ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 points.</td>
<td>1 point.</td>
</tr>
</tbody>
</table>
4.2. **Draw** the structures of stable benzotropone isomers A (with 6 signals in its 13C-NMR) and B (with 11 signals in its 13C-NMR).

A

\[\text{[Structure of A]} \]

3 points.

B

\[\text{[Structure of B]} \]

3 points.

4.3. When the following tetraene is reacted under photochemical conditions, symmetry-allowed product(s) can form according to the Woodward–Hoffmann rules. **Tick** the correct answer(s).

\[\text{[Reaction Scheme]} \]

- Tick the correct answer(s).
4.4. Considering stereochemistry, draw the structures of all possible products of this reaction. Circle the compound(s) which is/are chiral. Drawing only one enantiomer of an enantiomeric pair is sufficient. Please note that only C=C bonds participate in this reaction.

3 points for each correct structure (12 points in total).
0 points for each structure when there is missing stereochemical information.

4 points (in total) for the correct determination of chirality for the two chiral compounds (2 points each).
2 points if there is one mistake in the determination of chirality.
0 points if there is more than one mistake in the determination of chirality.
4.5. How many signals do you expect from the 13C-NMR spectra of 6, 7, and 8? Fill in the following boxes.

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 signals in 13C-NMR</td>
<td>4 signals in 13C-NMR</td>
<td>4 signals in 13C-NMR</td>
<td></td>
</tr>
<tr>
<td>3 points.</td>
<td>3 points.</td>
<td>3 points.</td>
<td></td>
</tr>
</tbody>
</table>

4.6. Draw open structures of the remaining achiral (meso) tribromo-norbornadiene (C$_7$H$_5$Br$_3$) isomers (C, D, and E) in addition to 6–8 over the given figures in the boxes.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 points.</td>
<td>3 points.</td>
<td>3 points.</td>
<td></td>
</tr>
</tbody>
</table>

4.7. How many signals do you expect from the 13C- and 1H-NMR spectra of 12 and 13?

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 signals in 13C-NMR (2 points). 2 signals in 1H-NMR (2 points).</td>
<td>10 signals in 13C-NMR (2 points). 5 signals in 1H-NMR (2 points).</td>
<td></td>
</tr>
</tbody>
</table>
Mevlana (Rumi) was a great mystic and Sufi poet who lived out his days in Konya in the 13th century. The indirect relevance of Konya to chemistry is that the city provides 65% of the country’s carrot production, from which one of the essential vitamins (vitamin A) is obtained.

Carrot is an important source of β-carotene, which gives the vegetable its orange color. This molecule is a red-orange pigment naturally found in plants and fruits and is a provitamin A carotenoid. It is converted to vitamin A, which is essential for normal growth and development, the immune system, and vision function.

Figure 1. Ball and stick representation of the structure of β-carotene. The gray and white spheres represent the carbon and hydrogen atoms, respectively. The numbered carbon atoms belong to the linear conjugated π-segment of the molecule.

β-Carotene has an extended polyene chain of 22 carbon atoms. It is a conjugated π-system, having alternating single and double bonds. Its experimental maximum absorption wavelength (λ_{max}) is 455 nm. We assume that all the bonds between C_1 and C_{22} are conjugated bonds. There are 22 π-electrons in the molecule (Figure 1).
To a crude approximation, the electrons in the C-2p\(_z\) orbitals, which are perpendicular to the molecular plane, are assumed to move along the entire molecule, without interacting with each other. They are like independent particles confined in a molecule moving along the x-axis in one dimension. These characteristics of π-electrons make them eligible for being treated by the simplest model called the particle in one-dimensional box model.

The wave function and the energies of the quantized levels for an electron moving in a one-dimensional box with infinite potential walls are given as follows:

\[\psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L} \]
\[E_n = \frac{n^2 \hbar^2}{8m_e L^2} \]

where \(n \) is the quantum number, \(n=1,2,3,4,\ldots \infty \), and \(L \) is the box length.

In two dimension, within the framework of independent particle approximation, the wave function is expressed as a product of one-dimensional wave functions, and the energy is expressed as a sum of one-dimensional energies. The energy levels of the two dimensional rectangular box is given as follows:

\[E_{n_x,n_y} = \left[\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} \right] \left\{ \frac{\hbar^2}{8m_e} \right\} \]

where \(n_x, n_y \) are the quantum numbers and they are positive integers. \(L_x, L_y \) are the dimensions of the box in the 2D model. They are positive numbers.

5.1. Which two of the sentences given below are correct? Tick only one answer which includes correct sentences in your answer sheet.

The \(\beta \)-carotene molecule is orange in color because

i) it absorbs in the visible region of the electromagnetic spectrum.

ii) HOMO \(\rightarrow \) LUMO transition occurs by absorption of IR photon.

iii) the spacing between the 22\(^{\text{nd}}\) and the 23\(^{\text{rd}}\) energy levels is equal to the energy of the IR photon at the orange wavelength.

iv) it absorbs green/blue light and it transmits red/yellow color.

v) it absorbs in the UV-Vis region since the molecule has no net dipole moment.

Although it is highly unrealistic, let us assume that the conjugated segment of the molecule is linear and treated with the particle in a one-dimensional box model as shown in figure 2. In
this case, the length of the box can be approximated as $L=1.40 \times n_C$ (in Å), where n_C is the number of carbon atoms in the conjugated segment.

Use this information to answer the questions 5.2–5.6.

Figure 2. Schematic representation of the conjugated line segment made up carbon atoms of β-carotene in a one-dimensional box of length L.

5.2. **Calculate** the energies (in J) of the lowest two energy levels

5.3. **Draw** the wavefunctions of the lowest two energy levels with proper labelling the x-axis.

5.4. **Sketch** the energy level diagram up to $n = 4$ showing the relative spacing.

5.5. What is the total π-energy (in J) of the molecule?

5.6. **Calculate** the wavelength (in nm) at which the transition between the highest occupied and lowest unoccupied energy levels occurs.

Use the particle in a two-dimensional box model to answer questions 5.7–5.8.

Figure 3. Schematic representation of the conjugated carbon atoms of β-carotene in a two-dimensional box.

Assume that the conjugated segment is made up of conjugated bonds that are all-trans to each other. The motion of the π-electrons is studied in the two-dimensional rectangular box with the dimensions $L_x = 26.0$ Å, $L_y = 3.0$ Å (Figure 3).
5.7. **Calculate** the energies (in J) of the highest occupied and the lowest unoccupied energy levels and the wavelength (in nm) at which the transition between these energy levels occurs.

5.8. What should be the L_x value (in Å) in order for the molecule to absorb light at the experimental \(\lambda_{\text{max}} = 455 \text{ nm} \) if L_y is kept constant at 3.0 Å. (Assume that the quantum numbers for homo and lumo are the same as in the question 5.7.)
Solution:

5.1. Which two of the sentences given below are correct? **Tick** only one answer which includes correct sentences in your answer sheet.

- ☐ a) i and ii ☐ b) i and iii ☒ c) i and iv ☐ d) i and v
- ☐ e) ii and iii ☐ f) ii and iv ☐ g) ii and v ☐ h) iii and iv
- ☐ i) iii and v ☐ j) iv and v

13 points for the correct answer.

5.2. **Calculate** the energies (in J) of the lowest two levels.

Calculation:

\[L = 1.40 \times 22 = 30.8 \text{ Å} \]

\[E_n = \frac{n^2 \hbar^2}{8m_e L^2} = n^2 \left(6.351 \times 10^{-21} \right) \text{ J} \quad E_1 = 6.351 \times 10^{-21} \text{ J} \quad E_2 = 2.540 \times 10^{-20} \text{ J} \]

13 points. 3 points for correct box length, 5 points for each correct energy value. No partial credit will be given.

5.3. **Draw** the wavefunctions of the lowest two energy levels with proper labelling the x-axis.

15 points. 3 points for labelling the x-axis and 6 points for the correct drawing of the wavefunctions. No partial credit will be given.
5.4. **Sketch** the energy level diagram up to $n = 4$ showing the relative spacing.

8 points. The lowest 4 energy levels, the energy scale and the relative spacing between the energy levels must be shown.

5.5. Calculate the total π-energy (in J) of the molecule?

Calculation:

\[
E_{\pi(\text{total})} = 2 \sum_{i=1}^{\text{occupied levels}} E_i
\]

\[
E_{\pi \ (\text{total})} = 2 \times (E_1+E_2+E_3+E_4+E_5+E_6+E_7+E_8+E_9+E_{10}+E_{11}) = 6.427 \times 10^{-18} \text{ J}
\]

12 points for the correct answer. 4 points if the multiplication by 2 is forgotten. No partial credit will be given.
5.6. **Calculate** the wavelength (in nm) at which the transition between the highest occupied and lowest unoccupied energy levels occurs.

Calculation:
The quantum numbers for the highest occupied and lowest unoccupied energy levels are 11 and 12, respectively.

\[
\Delta E = E_{12} - E_{11} = E_n = \frac{12^2\hbar^2}{8m_eL^2} - \frac{11^2\hbar^2}{8m_eL^2} = \frac{23\hbar^2}{8m_eL^2} = \frac{hc}{\lambda}
\]

\[
\lambda = \frac{8m_eL^2}{23\hbar} = 1360 \text{ nm}
\]

10 points for the correct answer.
If wavelength expression is written correctly but the result is calculated wrongly then 3 points will be deducted.
1 point will be deducted for incorrect unit.

5.7. **Calculate** the energies (in J) of the highest occupied and the lowest unoccupied energy levels and the wavelength (in nm) at which the transition between these energy levels occurs.

Calculation:

\[
E_{n_x,n_y} = \left[\frac{n_x^2}{L_x^2} + \frac{n_y^2}{L_y^2} \right] \left\{ \frac{\hbar^2}{8m_e} \right\} = \left[\frac{n_x^2}{26^2} + \frac{n_y^2}{3^2} \right] 6.025 \times 10^{-18} \text{ J}, \text{ where } L_x \text{ and } L_y \text{ should be in } \text{Å}.
\]

The quantum numbers and the energies of the highest occupied and the lowest unoccupied energy levels are:

\[
n_x = 11, \quad n_y = 1 \quad \text{and} \quad n_x = 12, \quad n_y = 1
\]

\[
E_{11,1} = \left[\frac{11^2}{26^2} + \frac{1^2}{3^2} \right] 6.025 \times 10^{-18} \text{ J} = 17.48 \times 10^{-19} \text{ J}
\]

\[
E_{12,1} = \left[\frac{12^2}{26^2} + \frac{1^2}{3^2} \right] 6.025 \times 10^{-18} \text{ J} = 19.53 \times 10^{-19} \text{ J}
\]

The transition wavelength is:

\[
\Delta E = E_{12,1} - E_{11,1} = (19.53 - 17.48) \times 10^{-19} \text{ J} = 2.050 \times 10^{-19} \text{ J}
\]

\[
\lambda = (hc)/\Delta E = 9.69 \times 10^{-7} \text{ m}, \quad \lambda = 969 \text{ nm}
\]

17 points for the correct answer.
12 points for correct energies
5 points for the correct wavelength
1 point will be deducted for incorrect unit.
No partial credit will be given.
5.8. What should be the L_x value (in Å) in order for the molecule to absorb light at the experimental λ_{max} if L_y is kept constant at 3.0 Å. (Assume that the quantum numbers for homo and lumo are the same as in the question 5.7.)

Calculation:

$$\Delta E = \left[\frac{12^2}{L_x^2} + \frac{1^2}{L_y^2} - \frac{11^2}{L_x^2} - \frac{1^2}{L_y^2} \right] \left\{ \frac{\hbar^2}{8m_e} \right\} = \left[\frac{23}{L_x^2} \right] 6.025 \times 10^{-18} = \frac{1.386 \times 10^{-18}}{L_x^2} \quad (L_x \text{ is in Å})$$

$$\Delta E = E_{\text{photon}} = \frac{(hc)}{\lambda} \rightarrow \frac{1.386 \times 10^{-18}}{L_x^2} = \frac{6.626 \times 10^{-34} \times 2.998 \times 10^8}{455 \times 10^{-9}}$$

$$L_x = 1.782 \times 10^{-9} \text{ m} \quad L_x = 17.82 \text{ Å}$$

12 points for the correct answer.

No partial credit will be given.

1 point will be deducted for incorrect unit.
Problem 6. Thermodynamics through an Interstellar Journey

Part 1
In a hypothetical universe, an unknown amount of diborane participates in the following reaction:

\[\text{B}_2\text{H}_6(\text{g}) + 6 \text{H}_2\text{O}(\text{l}) \rightarrow 2 \text{H}_3\text{BO}_3(\text{s}) + 6 \text{H}_2(\text{g}) \]

Assume that in this hypothetical universe, H$_3$BO$_3$(s) obtained from this reaction was completely sublimed at 300 K. The necessary energy for sublimation was obtained through work released by one cycle of an ideal heat engine in which one mole of monoatomic perfect gas flows through the cycle described in the pressure (p) – volume (V) diagram below:

- A→B; isothermal reversible expansion receiving 250 J by heat transfer (q_H) at a temperature of 1000 K (T_H) from a hot source.
- B→D; reversible adiabatic expansion.
- D→C; isothermal reversible compression at a temperature of 300 K (T_C) releasing some amount of heat (q_C) to a cold sink.
- C→A; reversible adiabatic compression.
After heat transfers, the remaining energy is released as work (w). Also, q_H and q_C are related to T_C and T_H as follows:

$$\frac{|q_H|}{|q_C|} = \frac{T_H}{T_C}$$

The efficiency of the cycle can be found by work released by cycle (w) divided by heat absorbed by cycle (q_H).

You are provided with the change in enthalpies of the following reactions at 300 K.

(1) $\text{B}_2\text{H}_6(g) + 6 \text{Cl}_2(g) \rightarrow 2 \text{BCl}_3(g) + 6 \text{HCl}(g)$ \hspace{1cm} $\Delta_rH(1) = -1326 \text{ kJ mol}^{-1}$

(2) $\text{BCl}_3(g) + 3 \text{H}_2\text{O}(l) \rightarrow \text{H}_3\text{BO}_3(g) + 3 \text{HCl}(g)$ \hspace{1cm} $\Delta_rH(2) = -112.5 \text{ kJ mol}^{-1}$

(3) $\text{B}_2\text{H}_6(g) + 6 \text{H}_2\text{O}(l) \rightarrow 2 \text{H}_3\text{BO}_3(s) + 6 \text{H}_2(g)$ \hspace{1cm} $\Delta_rH(3) = -493.4 \text{ kJ mol}^{-1}$

(4) $\frac{1}{2} \text{H}_2(g) + \frac{1}{2} \text{Cl}_2(g) \rightarrow \text{HCl}(g)$ \hspace{1cm} $\Delta_rH(4) = -92.3 \text{ kJ mol}^{-1}$

6.1. **Calculate** the molar enthalpy of sublimation (in kJ mol$^{-1}$) for H$_3$BO$_3$ at 300 K.

6.2. **Calculate** the Δ_rU (internal energy) in terms of kJ mol$^{-1}$ at 300 K for the reactions (2) and (4) given above (assume ideal gas behavior for each gaseous species in each reaction).

6.3. **Calculate** the amount of overall work produced by a heat engine ($|w|$) in terms of J and the amount of overall heat released to the cold sink ($|q_C|$) in terms of J.

6.4. **Calculate** the efficiency of the heat engine described above.

6.5. **Calculate** the entropy change (ΔS) for $A \rightarrow B$ and $D \rightarrow C$ processes in the heat engine in terms of J K$^{-1}$.

6.6. **Calculate** the Gibbs energy change (ΔG) in terms of J for $A \rightarrow B$ and $D \rightarrow C$ processes in the heat engine.

6.7. **Calculate** the ratio of pressure at point A to the pressure at point B in the cycle (standard pressure: 1 bar).
6.8. **Calculate** the amount of H\(_2\) (g) (in moles) produced according to the reaction given at the beginning of the task for one cycle of the engine.

Part 2

Interstellar journeys can be done by using diborane as rocket fuel. Combustion of diborane is shown below:

\[
\text{B}_2\text{H}_6 (g) + 3\text{O}_2 (g) \rightarrow \text{B}_2\text{O}_3 (s) + 3\text{H}_2\text{O} (g)
\]

Combustion of diborane is experimented in a 100 L closed container at different temperatures and the equilibrium amounts were recorded.

<table>
<thead>
<tr>
<th></th>
<th>8930 K</th>
<th>9005 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(_2)H(_6)(g)</td>
<td>0.38 mol</td>
<td>0.49 mol</td>
</tr>
<tr>
<td>H(_2)O(g)</td>
<td>0.20 mol</td>
<td>0.20 mol</td>
</tr>
</tbody>
</table>

Partial pressure of O\(_2\) (g) was stabilized to 1 bar and kept constant at all conditions. Assume that in this hypothetical universe; \(\Delta S^\circ\) and \(\Delta H^\circ\) are independent of temperature, the standard molar entropy \((S^\circ)\) of B\(_2\)O\(_3\)(s) does not change with pressure, all the gas species behave as an ideal gas, and all species remain in the same phase, without any further decomposition before or after reaction, at all temperatures then:

6.9. **Calculate** \(K_p\) (pressure based equilibrium constant) at 8930 K and 9005 K.

6.10. **Calculate** \(\Delta G^\circ\) of the reaction in terms of kJ mol\(^{-1}\) at 8930 K and 9005 K. (If you failed to find \(K_p\), please use \(K_p\) (8930 K) =2, \(K_p\) (9005 K) = 0.5)

6.11. **Calculate** \(\Delta G^\circ\) (in terms of kJ mol\(^{-1}\)), \(\Delta H^\circ\) (in terms of kJ mol\(^{-1}\)), and \(\Delta S^\circ\) (in terms of J mol\(^{-1}\)K\(^{-1}\)) of the combustion reaction at 298 K. (If you failed to find \(K_p\), please use \(K_p\) (8930 K) =2, \(K_p\) (9005 K) = 0.5)

6.12. **Tick** the correct answer in the table by determining whether combustion reactions are favored or not at given T below under standard pressure (1 bar).

<table>
<thead>
<tr>
<th></th>
<th>favored</th>
<th>Unfavored</th>
</tr>
</thead>
<tbody>
<tr>
<td>298 K</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8930 K</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>9005 K</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>9100 K</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
6.13. **Calculate** the $\Delta_f H$ (kJ mol$^{-1}$) and S° (kJ mol$^{-1}$ K$^{-1}$) of H$_2$O(g) using the values given in the table below. ($\Delta_f H =$ enthalpy of formation, $S^\circ =$ standard entropy)

(If you fail to find $\Delta_r H^\circ$ and $\Delta_r S^\circ$ of the combustion, please use $\Delta H^\circ = 1000$ kJ mol$^{-1}$, $\Delta S^\circ = 150$ J K$^{-1}$ mol$^{-1}$)

<table>
<thead>
<tr>
<th></th>
<th>ΔH_f (298 K)</th>
<th>S° (298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B$_2$H$_6$ (g)</td>
<td>36.40 kJ mol$^{-1}$</td>
<td>0.23 kJ mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>O$_2$ (g)</td>
<td>0.00 kJ mol$^{-1}$</td>
<td>0.16 kJ mol$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>B$_2$O$_3$ (s)</td>
<td>−1273 kJ mol$^{-1}$</td>
<td>0.05 kJ mol$^{-1}$ K$^{-1}$</td>
</tr>
</tbody>
</table>
Solution:

6.1. **Calculate** the molar enthalpy of sublimation (in kJ mol\(^{-1}\)) for H\(_3\)BO\(_3\) at 300 K.

Calculation:

Hess rule:

\[
\Delta H(3) - 2 \times \Delta H(2) + 12 \times \Delta H(4) - \Delta H(1) = -2 \times \Delta H_{\text{sub}} (H_3BO_3)
\]

\[
\Delta H_{\text{sub}} (H_3BO_3) = 25 \text{ kJ mol}^{-1}
\]

5 points.

2 points will be deducted if student forgets to divide by 2 in last step.
3 points will be deducted if Hess rule is applied correctly, but the answer is incorrect due to miscalculation.
If the answer is incorrect due to any other reason, Zero point will be given.
If any other unit than asked unit is used in the answer, 0.5 points will be deducted.

6.2. **Calculate** the \(\Delta U\) (internal energy) in terms of kJ mol\(^{-1}\) at 300 K for the reactions (2) and (4) given above (assume ideal gas behavior for each gaseous species in each reaction).

Calculation:

\[
\Delta U = \Delta H - \Delta(PV) = \Delta H - (\Delta n_{\text{gas}})RT
\]

\[
RT = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1} \times 300 \text{ K} = 2.494 \text{ kJ mol}^{-1}
\]

\[
\Delta U = \Delta H - (\Delta n_{\text{gas}}) \times 2.494 \text{ kJ mol}^{-1}
\]

\[
\Delta U(2) = -112.5 \text{ kJ} - (3 \text{ mol}) \times 2.494 \text{ kJ mol}^{-1} = -120.0 \text{ kJ}
\]

\[
\Delta U(4) = -92.3 \text{ kJ} - (0) \times 2.494 \text{ kJ mol}^{-1} = -92.3 \text{ kJ}
\]

6x2=12 points.
For each calculation considering that the logic for solving this question is correctly established;
1 point will be deducted if the answer is not correct in due to miscalculation.
If the logic for solving this question is not established correctly, no points will be given.
If any other unit than asked unit is used in the answer, 0.5 points will be deducted.
6.3. **Calculate** the amount of work produced by a heat engine (w) in terms of J and the amount of heat released to the cold sink (q_c) in terms of J.

Calculation:

\[
\begin{align*}
|q_H| &= \frac{T_H}{T_C} \cdot \frac{250 J}{q_c} = \frac{1000 K}{300 K} \rightarrow |q_c| = 75 J \\
|q_c| &= q_H - |q_c| = 250 J - 75 J = 175 J
\end{align*}
\]

For w = 3 points, for 3 q_c = 3 points, in total 6 points.

If q_c is incorrect due to miscalculation, 1 point will be deducted.
If w is incorrect due to miscalculation, 1 point will be deducted.
If w is incorrect due to incorrect q_c calculated in this section, zero point will be deducted.
If w is incorrect due to incorrect q_c calculated in this section and there are miscalculations, 1 point will be deducted.
If any other unit than asked unit is used in the answer, 0.5 points will be deducted.

6.4. **Calculate** the efficiency of the heat engine described above.

Calculation:

\[
\text{efficiency} = \frac{|w|}{|q_H|} = \frac{175 J}{250 J} = 0.70
\]

3 points.

If efficiency is in correct due to miscalculation, 1 point will be deducted.
If efficiency is incorrect due to incorrect w obtained in 6.3, zero point will be deducted.
If efficiency is incorrect due to incorrect w obtained in 6.3 and there are miscalculations, 1 point will be deducted.
If any unit is used in the answer, 0.5 points will be deducted.
6.5. **Calculate** the entropy change (ΔS) for A→B and D→C processes in the heat engine in terms of J K⁻¹.

Calculation:

\[\Delta S = \frac{dq_{reversible}}{T} \]

For A→B

\[\Delta S_{A\rightarrow B} = \frac{250 \text{ J}}{1000 \text{ K}} = 0.25 \text{ J K}^{-1} \]

For D→C

\[\Delta S_{D\rightarrow C} = \frac{-75 \text{ J}}{300 \text{ K}} = -0.25 \text{ J K}^{-1} \]

3 points for A→B, 3 points for D→C, in total 6 points.

If \(\Delta S_{A\rightarrow B} \) is incorrect due to miscalculation, 1 points will be deducted.

Since \(q_r \) is provided in the question, If \(\Delta S_{A\rightarrow B} \) is incorrect due to any other reason, no points will be given.

If \(\Delta S_{D\rightarrow C} \) is incorrect due to miscalculation, 1 points will be deducted.

If \(\Delta S_{D\rightarrow C} \) is incorrect due to incorrect \(q_c \) obtained in 6.5, Zero point will be deducted. However, if there are miscalculations, 1 points will be deducted.

If any other unit than asked unit is used in the answer, 0.5 points will be deducted.

6.6. **Calculate** the Gibbs energy change (ΔG) in terms of J for A→B and D→C processes in the heat engine.

Calculation:

\[\Delta G = \Delta H - T \Delta S, \text{ for isothermal processes } \Delta H = 0, \text{ then } \Delta G = -T \Delta S \]

\[\Delta G_{A\rightarrow B} = -0.25 \text{ J K}^{-1} \times 1000 \text{ K} = -250 \text{ J} \]

\[\Delta G_{D\rightarrow C} = -(0.25 \text{ J K}^{-1}) \times 300 \text{ K} = 75 \text{ J} \]

3 points for A→B, 3 points for D→C, in total 6 points.

If \(\Delta G_{A\rightarrow B} \) is incorrect due to miscalculation, 1 points will be deducted.

If \(\Delta G_{D\rightarrow C} \) is incorrect due to miscalculation, 1 points will be deducted.

If \(\Delta G_{A\rightarrow B} \) is incorrect due to incorrect \(\Delta S_{A\rightarrow B} \) obtained in 6.5, zero point will be deducted. But if there are miscalculations, 1 points will be deducted.

If \(\Delta G_{D\rightarrow C} \) is incorrect due to incorrect \(\Delta S_{D\rightarrow C} \) obtained in 6.5, zero point will be deducted. But if there are miscalculations, 1 points will be deducted.

If \(\Delta H \) is not considered to be zero, no points will be given.
If any other unit than asked unit is used in the answer, 0.5 points will be deducted.

6.7. **Calculate** the ratio of pressure at point A to the pressure at point B in the cycle.

Calculation:

\[
\Delta S = \frac{dq_{reversible}}{T} = nR \ln \frac{V_B}{V_A}
\]

\[0.25 J K^{-1} = 1 \text{ mol} \times 8.314 J \text{ mol}^{-1} K^{-1} \ln \frac{V_B}{V_A}\]

\[\ln \frac{V_B}{V_A} = 0.03007 \rightarrow \frac{V_B}{V_A} = 1.03\]

\[\frac{V_B}{V_A} = \frac{P_A}{P_B} \rightarrow \frac{P_A}{P_B} = 1.03\]

5 points.
If student can find up to \(\ln \frac{V_B}{V_A}\) with correct value and calculate no further, 3 points will be deducted.
If student can find up to \(\ln \frac{V_B}{V_A}\) with incorrect value and calculate no further, 3.5 points will be deducted.
If student can find up to \(\frac{V_B}{V_A}\) with correct value and calculate no further, 2 points will be deducted.
If student can find up to \(\frac{V_B}{V_A}\) with incorrect value and calculate no further, 2.5 points will be deducted.
If student gets incorrect \(\frac{P_A}{P_B}\) due to miscalculation, 1.5 points will be deducted.
If student uses incorrect \(\Delta S\) obtained from 6.5 or given in the question, no points will be deducted.
If any unit is used in the answer, 0.5 points will be deducted.
6.8. **Calculate** the amount of H\(_2\) (g) (in moles) produced during the formation of boric acid.

Calculation:

\[
\begin{align*}
\frac{0.175 \text{ kJ}}{25 \text{ kJ mol}^{-1}} &= 7 \times 10^{-3}\text{ moles of } H_3BO_3 \text{ is sublimated} \\
(7 \times 10^{-3}) \times 3 &= 21 \times 10^{-3} \text{ moles of } H_2 \text{ is generated}
\end{align*}
\]

3 points.
If student gives incorrect answer due to miscalculation in any step, no points will be given.
If student gives incorrect answer due to incorrect \(w\) obtained in 6.3, no points will be deducted. If there are miscalculations, the grading scheme given above will be applied.
If student gives incorrect answer due to incorrect sublimation enthalpy obtained in 6.1, no points will be deducted. If there are miscalculations, the grading scheme given above will be applied.
If any other unit than asked unit is used in the answer, 0.5 points will be deducted.

6.9. **Calculate** \(K_p\) (pressure based equilibrium constant) at 8930 K and 9005.

Calculation:

\[
PV = nRT \rightarrow P = \frac{nRT}{V} \rightarrow P = \frac{n \times 0.08205 \text{ L atm mol}^{-1} K^{-1} \times T}{100 \text{ L}}
\]

At 8930 K,
\[
\begin{align*}
\text{For } B_2H_6(g) \rightarrow P_{B_2H_6(g)} &= \frac{0.38 \text{ mol} \times 0.08205 \text{ L atm mol}^{-1} K^{-1} \times 8930 \text{ K}}{100 \text{ L}} \\
&= 2.784 \text{ atm} = 2.821 \text{ bar} \\
\text{For } H_2O(g) \rightarrow P_{H_2O(g)} &= \frac{0.20 \text{ mol} \times 0.08205 \text{ L atm mol}^{-1} K^{-1} \times 8930 \text{ K}}{100 \text{ L}} \\
&= 1.465 \text{ atm}
\end{align*}
\]

At 9005 K,
\[
\begin{align*}
\text{For } B_2H_6(g) \rightarrow P_{B_2H_6(g)} &= \frac{0.49 \text{ mol} \times 0.08205 \text{ L atm mol}^{-1} K^{-1} \times 9005 \text{ K}}{100 \text{ L}} \\
&= 3.618 \text{ atm} = 3.666 \text{ bar} \\
\text{For } H_2O(g) \rightarrow P_{H_2O(g)} &= \frac{0.20 \text{ mol} \times 0.08205 \text{ L atm mol}^{-1} K^{-1} \times 9005 \text{ K}}{100 \text{ L}} \\
&= 1.498 \text{ bar}
\end{align*}
\]

\[
K_p \text{ at } 8930 \text{ K} = \frac{(P_{H_2O(g)})^3}{(P_{O_2(g)})^3 \times P_{B_2H_6(g)}} = \frac{(1.484)^3}{(1)^3 \times 2.821} = 1.159
\]
\[K_p \text{ at } 9005 K = \frac{(P_{H_2O(g)})^3}{(P_{O_2(g)})^3 \times P_{B_2H_6(g)}} = \frac{(1.498)^3}{1^3 \times 3.666} = 0.917 \]

2x4 points for \(K_p \).
For each calculation of \(K_p \),
If answer is incorrect due to miscalculation, 1 point will be deducted.
If answer is incorrect due to incorrect \(P_{B_2H_6(g)} \) calculated in this part, no points will be deducted.
However, if there are miscalculation, 1 point will be deducted.
If answer is incorrect due to incorrect \(K_p \) calculated in this part, no points will be deducted.
If answer is incorrect due to miscalculation and incorrect \(K_p \), 1 point will be deducted.

6.10. **Calculate** \(\Delta G^\circ \) of the reaction in terms of kJ mol\(^{-1}\) at 8930 K and 9005 K (use three decimal places for your result).
(If you failed to find \(K_p \), please use \(K_p \) (8930 K) =2, \(K_p \) (9005 K) = 0.5)

Calculation:

The equilibrium constant is determined by gaseous species, \(K_p \) is going to be used to calculate \(\Delta G^\circ \):

\[\Delta G^\circ = -RT lnK_p \]

\[\Delta G^\circ \text{ at } 8930 \text{ K} = -8.3145 \text{ J mol}^{-1} \text{ K}^{-1} \times 8930 \text{ K} \ln1.159 = -10.956 \text{ kJ mol}^{-1} \]

\[\Delta G^\circ \text{ at } 9005 \text{ K} = -8.3145 \text{ J mol}^{-1} \text{ K}^{-1} \times 9005 \text{ K} \ln0.917 = 6.488 \text{ kJ mol}^{-1} \]

3 points for each \(\Delta G^\circ \), in total 6 points.
For each \(\Delta G^\circ \),
If \(\Delta G^\circ \) is incorrect due to miscalculation, 1 points will be deducted.
If student uses incorrect value for \(K_p \) obtained from 6.9 or provided in this question, no points will be deducted. If there are miscalculations, if there are miscalculations, 1 point will be deducted.
If any other unit than asked unit is used in the answer, 0.5 points will be deducted.
6.11. **Calculate** $\Delta_r G^\circ$ (in terms of kJ mol$^{-1}$), $\Delta_r H^\circ$ (in terms of kJ mol$^{-1}$), and $\Delta_r S^\circ$ (in terms of J mol$^{-1}$K$^{-1}$) of the combustion reaction at 298 K.

(If you failed to find K_p, please use $K_p (8930 \text{ K}) = 2$, $K_p (9005 \text{ K}) = 0.5$)

Calculation:

\[
\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ
\]

\[
\Delta G^\circ(8930 \text{ K}) = -10956 \text{ J mol}^{-1} = \Delta H^\circ - 8930 \text{ K} \times \Delta S^\circ
\]

\[
\Delta G^\circ(9005 \text{ K}) = 6488 \text{ J mol}^{-1} = \Delta H^\circ - 9005 \text{ K} \times \Delta S^\circ
\]

\[
\Delta S^\circ = -249.1 \text{ J mol}^{-1} \text{K}^{-1}
\]

\[
\Delta H^\circ = -2237.1 \text{ kJ mol}^{-1}
\]

\[
\Delta G^\circ(298 \text{ K}) = -2237.1 \text{ kJ mol}^{-1} - 298 \text{ K} \times (-0.2491 \text{ kJ mol}^{-1} \text{K}^{-1})
\]

\[
= -2162.9 \text{ kJ mol}^{-1}
\]

2 points for ΔG°, 2 points for ΔH°, 2 points for $\Delta G^\circ(298 \text{ K})$, in total 6 points.

For ΔS° and ΔH°, if student gives incorrect answer due to miscalculation, 1 point will be deducted.

Students may calculate ΔS° after finding ΔH° by using;

\[
\ln K = -\frac{\Delta_r H^\circ}{RT} + \frac{\Delta_r S^\circ}{R}
\]

If student gives incorrect answer due to miscalculation, 1 point will be deducted.

If student gives incorrect answer due incorrect ΔH° obtained by in this part, zero point will be deducted. If there are miscalculations, 1 point will be deducted.

*For ΔG°, if student gives incorrect answer due to miscalculation, 1 point will be deducted.

For ΔG°, if student gives incorrect answer due to incorrect ΔS° obtained in this part, zero point will be deducted. If there are miscalculations, 1 point will be deducted.

For ΔG°, if student gives incorrect answer due to incorrect ΔH° obtained in this part, zero point will be deducted. If there are miscalculations, 1 point will be deducted.

For ΔG°, if student gives incorrect answer due to incorrect ΔS° and ΔH° obtained in this part, zero point will be deducted. If there are miscalculations, 1 point will be deducted.

If student uses any incorrect value for ΔG° and/or K_p obtained from 6.9 and 6.10 or given in this question, no points will be deducted. If there are miscalculations, If there are miscalculations, 1 point will be deducted.
\[
\ln \frac{K_2}{K_1} = - \frac{\Delta_r H^\circ}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)
\]

Correct answers obtained by using this equation will be graded over 6 points with 2 points for \(\Delta S^\circ\), 2 points for \(\Delta H^\circ\), 2 points for \(\Delta G^\circ(298 \, K)\)

However;
For \(\Delta H^\circ\), if student gives incorrect answer due to miscalculation, 1 point will be deducted.
For \(\Delta S^\circ\), if student gives incorrect answer due to miscalculation, 1 point will be deducted.
For \(\Delta S^\circ\), if student gives incorrect answer due incorrect \(\Delta H^\circ\) obtained by using equation above, zero point will be deducted. If there are miscalculations, 1 point will be deducted.

**
Students may calculate \(\Delta S^\circ\) after finding \(\Delta H^\circ\) by using;

\[
\ln K = - \frac{\Delta_r H^\circ}{RT} + \frac{\Delta_r S^\circ}{R}
\]

If student gives incorrect answer due to miscalculation, 1 point will be deducted.
If student gives incorrect answer due incorrect \(\Delta H^\circ\) obtained by in this part, zero point will be deducted. If there are miscalculations, 1 point will be deducted.

**
For \(\Delta G^\circ\), if student gives incorrect answer due to miscalculation, 1 point will be deducted.
For \(\Delta G^\circ\), if student gives incorrect answer due to incorrect \(\Delta H^\circ\) obtained in this part, zero point will be deducted. If there are miscalculations, 1 point will be deducted.
For \(\Delta G^\circ\), if student gives incorrect answer due incorrect \(\Delta S^\circ\) obtained in this part, zero point will be deducted. If there are miscalculations, 1 point will be deducted.
For \(\Delta G^\circ\), if student gives incorrect answer due to incorrect \(\Delta S^\circ\) and \(\Delta H^\circ\) obtained in this part, zero point will be deducted.
If student uses any incorrect value for \(\Delta G^\circ\) and/or \(K_p\) obtained from 6.9 and 6.10 or given in this question, no points will be deducted. If there are miscalculations, the grading scheme above will be applied

If any other unit than asked unit is used in the answer, 0.5 points will be deducted.

6.12. Tick the correct answer on the table by determining whether combustion reactions are favored or not at given T below under standard pressure (1 bar).

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Favored</th>
<th>Unfavored</th>
</tr>
</thead>
<tbody>
<tr>
<td>298 K</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>8930 K</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>9005 K</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>9100 K</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

\textbf{8 points. Each correct answer is 2 points.}
6.13. **Calculate** the ΔH (kJ mol$^{-1}$) and S° (kJ mol$^{-1}$ K$^{-1}$) of H$_2$O(g) using the values given in the table below. ($\Delta H =$ enthalpy of formation, $S^\circ =$ standard entropy)

(If you fail to find $\Delta r H^\circ$ and $\Delta r S^\circ$ of the combustion, please use $\Delta H^\circ = 1000$ kJ mol$^{-1}$, $\Delta S^\circ = 150$ J K$^{-1}$ mol$^{-1}$)

Calculation:

$$\text{B}_2\text{H}_6 (g) + 3\text{O}_2 (g) \rightarrow \text{B}_2\text{O}_3 (s) + 3\text{H}_2\text{O} (g)$$

$$\Delta H^\circ = [\Delta H_f (\text{B}_2\text{O}_3(s)) + 3 \times \Delta H_f (\text{H}_2\text{O}(g))] - [\Delta H_f (\text{B}_2\text{H}_6(g)) + 3 \times \Delta H_f (\text{O}_2(g))]$$

$$\Delta S^\circ = [S^\circ (\text{B}_2\text{O}_3(s)) + 3 \times S^\circ (\text{H}_2\text{O}(g))] - [S^\circ (\text{B}_2\text{H}_6(g)) + 3 \times S^\circ (\text{O}_2(g))]$$

$$\Delta H_f (\text{H}_2\text{O}(g)) = -309.2 \text{ kJ mol}^{-1}$$

$$S^\circ (\text{H}_2\text{O}(g)) = 0.137 \text{ kJ mol}^{-1} \text{ K}^{-1}$$

3 points for $\Delta H_f (\text{H}_2\text{O}(g))$, 3 points for $S^\circ (\text{H}_2\text{O}(g))$, in total 6 points.

If $\Delta H_f (\text{H}_2\text{O}(g))$ is in correct due to miscalculation, 2 points will be deducted.

If $S^\circ (\text{H}_2\text{O}(g))$ is in correct due to miscalculation, 2 points will be deducted.

No points will be deducted if wrong values are obtained for ΔH° and ΔS° from 6.11 or the values provided here. If there are miscalculations, 2 points will be deducted for each.

If any other unit than asked unit is used in the answer, 0.5 points will be deducted.
Problem 7. Phthalo cyanines

Emeritus Professor Özer Bekaroğlu

The term phthalocyanine (Pc) takes its origin from the Greek “naphtha”, which means rock oil, and “cyanine”, which means dark blue. Turkish scientist Özer Bekaroğlu can be regarded as the pioneer of Pc chemistry in Turkey.

Metal-free phthalocyanine (1, H₂Pc) is a large planar macrocyclic compound with the formula \((\text{C}_8\text{H}_8\text{N}_2)_4\text{H}_2\).

7.1. How many \(\pi\)-electrons are there in the bold region of the H₂Pc molecule in compound 1 shown above?
Pcs containing one or two metal ions are called metallo-phthalocyanines (MPcs) and they exhibit different geometries as given above.

7.2. **Complete** the table in your answer sheet by determining the coordination number of central ions in 2–5.

<table>
<thead>
<tr>
<th>Central ion</th>
<th>Copper ion</th>
<th>Titanium ion</th>
<th>Silicon ion</th>
<th>Cerium ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordination number</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.3. **Complete** the table in your answer sheet by determining the oxidation number of each metal (Cu, Ti, and Ce) in 2, 3, and 5.

<table>
<thead>
<tr>
<th>Metal in compounds</th>
<th>2</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation number</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.4. **Complete** the table in your answer sheet by determining the geometry of compounds 2–5.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octahedral</td>
<td></td>
</tr>
<tr>
<td>Square prism</td>
<td></td>
</tr>
<tr>
<td>Square pyramidal</td>
<td></td>
</tr>
<tr>
<td>Square planar</td>
<td></td>
</tr>
</tbody>
</table>

7.5. **Complete** the table in your answer sheet by determining the magnetic property of compounds 2–5.

- Use the letter "p" for paramagnetic property and letter "d" for a diamagnetic property.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Magnetic property</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
7.6. Write the ground-state electron configuration of the silicon (Si) ion in the compound 4 and find all the quantum numbers for the 2p electrons in its ground state.

Electron configuration:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>l</th>
<th>m_l</th>
<th>m_s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quantum numbers for 2p electrons:

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>l</th>
<th>m_l</th>
<th>m_s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Metal-free phthalocyanine (1, H₂Pc) is commonly formed through the cyclotetramerization of phthalonitriles. On the other hand, Pcs having different substituents are called asymmetric, which can be prepared by the statistical cyclization of two different phthalonitriles. This method has no selectivity and the product is a mixture of all possible isomers.

7.7. Draw the possible products that may occur in the statistical cyclization method by using F and G. If there are any stereoisomers label as cis- or trans-.

- F and G represent two different symmetrical phthalonitriles.
- One of the products is F₄ as given below.
- Draw other products similar to the format of F₄.

Pcs are used as photosensitizers in the photodynamic therapy (PDT) of cancer due to their strong absorption in the visible spectrum and high molar absorption coefficients. PDT consists of three essential components: photosensitizer, light, and oxygen. None of these is individually toxic, but together they initiate a photochemical reaction resulting in the generation of cytotoxic singlet oxygen (¹O₂) that can destroy cancer cells.
The multiplicity of an energy level is defined as $2S+1$

- If the two spins are parallel ($\uparrow\uparrow$), $S = 1$, and if the two spins are antiparallel ($\uparrow\downarrow$), $S = 0$.

7.8. **Draw** the molecule orbital (MO) diagram of the lowest energy singlet state of dioxygen ($^{1}O_2$) and calculate bond order.
 - There are no unpaired electrons in that state!

7.9. If the wavelength of the light needed to excite triplet oxygen into singlet oxygen is 1270 nm, **calculate** the energy (in kJ/mol) needed for this transition process.
Solution:

7.1. How many π-electrons are there in the bold region of the H$_2$Pc molecule in compound 1 shown above?

The number of π-electrons in an H$_2$Pc: **18 π-electrons**

4 points for correct answer.
0 points if the number of electrons is not correct.

7.2. **Complete** the table in your answer sheet by determining the coordination number of central ions in 2–5.

<table>
<thead>
<tr>
<th>Central ion</th>
<th>Copper ion</th>
<th>Titanium ion</th>
<th>Silicon ion</th>
<th>Cerium ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordination number</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

2 points for each correct answer (8 points in total).
0 points if the answer is not correct.

7.3. **Complete** the table in your answer sheet by determining the oxidation number of each metal (Cu, Ti, and Ce) in 2, 3, and 5.

<table>
<thead>
<tr>
<th>Metal in compounds</th>
<th>2</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation number</td>
<td>+2</td>
<td>+4</td>
<td>+4</td>
</tr>
</tbody>
</table>

2 points for each correct answer (6 points in total).
0 points if the answer is not correct.

7.4. **Complete** the table in your answer sheet by determining the geometry of compounds 2–5.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octahedral</td>
<td>4</td>
</tr>
<tr>
<td>Square prism</td>
<td>5</td>
</tr>
<tr>
<td>Square pyramidal</td>
<td>3</td>
</tr>
<tr>
<td>Square planar</td>
<td>2</td>
</tr>
</tbody>
</table>

2 points for each correct answer (8 points in total).
0 points if the answer is not correct.
7.5. Complete the table in your answer sheet by determining the magnetic property of compounds 2–5.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Magnetic property</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>p</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
</tr>
<tr>
<td>5</td>
<td>d</td>
</tr>
</tbody>
</table>

2 points for each correct answer (8 points in total).
0 points if the answer is not correct.

7.6. Write the ground-state electron configuration of the silicon (Si) ion in the compound 4 and find all the quantum numbers for the 3p electrons in its ground state.

Electron configuration: Si^{4+}: [He] 2s^{2}2p^{6}

2 points for writing electron configuration. (0 points if the electron configuration is not correct.)

<table>
<thead>
<tr>
<th>n</th>
<th>l</th>
<th>m_1</th>
<th>m_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>+1</td>
<td>+1/2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>+1/2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>+1/2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>+1</td>
<td>-1/2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1/2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>-1/2</td>
</tr>
</tbody>
</table>

Quantum numbers for 2p electrons:

2 points for each correct quantum set (12 points in total).
0 points if one of the quantum number is not correct in the set.
7.7. **Draw** the possible products that may occur in the statistical cyclization method by using F and G. If there are any stereoisomers label as *cis*- or *trans*.

Products:

3 points for each of the structures (15 points in total).
2 point for each of the stereoisomers (4 points in total).
0 points if the products or isomers are not correct.
7.8. **Draw** the molecule orbital (MO) diagram of the lowest energy singlet state of dioxygen \(^1\text{O}_2\) and calculate bond order.

MO diagram:

9 points for one of the correct MO diagrams (correct number of electrons 3 points, correct number and ordering of energy level of the MOs 3 points, correct arrangement of electrons 3 points).

Bond order: \((8 - 4)/2 = 2\)
3 points.
0 points if the bond order is not correct.

7.9. If the wavelength of the light needed to excite triplet oxygen into singlet oxygen is 1270 nm, **calculate** the energy (in kJ/mole) needed for this transition process.

Calculation:

1 nm = \(1 \times 10^{-9}\) m and \(1270\) nm = \(1.270 \times 10^{-6}\) m

\[
E = h \times c / \lambda
\]

\[
E = (6.6261 \times 10^{-34} \text{ J s}) (2.9979 \times 10^8 \text{ ms}^{-1}) / 1.270 \times 10^{-6} \text{ m} = 1.564 \times 10^{-19} \text{ J}
\]
1.564 \times 10^{-22} \text{ kJ}

4 points.

For 1 mol, multiply by Avogadro’s constant = (1.564 \times 10^{-22} \text{ kJ}) (6.0221 \times 10^{23} \text{ mol}^{-1})

= 94.19 \text{ kJ/mol}

2 points.
0 points if the calculation is not correct.
Problem 8. Boron Compounds and Hydrogen Storage

Sodium borohydride (NaBH₄) and ammonia borane (BNH₆) are the most studied chemical hydrogen storage materials. In this question, you will explore the chemistry of boron and the use of boron compounds as hydrogen storage materials.

Borax (Na₂B₄O₇ · nH₂O) is a boron mineral that is produced by ETI Mining Company in Turkey. NaBH₄ can be synthesized by the reduction of anhydrous borax with metallic sodium under high-pressure hydrogen gas in the presence of silicon dioxide (silica) at 700 °C, namely the Bayer process. In this process, all hydrogen is stored in NaBH₄. On the other hand, it has been shown that ammonia borane (BNH₆) can be synthesized by the reaction of NaBH₄ and ammonium sulfate in dry tetrahydrofuran (THF) at 40 °C (Hint: BNH₆ synthesis must be conducted in a well-ventilated fume-hood because flammable gas is generated as one of the by-products). While NaBH₄ is an ionic compound, ammonia borane is a Lewis acid–base adduct.

8.1. Write a balanced chemical equation for the synthesis of NaBH₄ from anhydrous borax.

8.2. Write a balanced chemical equation for the synthesis of ammonia borane from NaBH₄.

8.3. Draw the molecular geometry of the BH₄⁻ ion and BNH₆ molecule.

8.4. Calculate the hydrogen content of NaBH₄ and BNH₆ as a percentage by mass (wt%).
The hydrogen stored in both compounds can be released via hydrolysis reactions in the presence of a suitable catalyst at room temperature. Upon the hydrolysis reactions, 4 and 3 moles of H₂ gas are released from the hydrolysis of 1 mole of NaBH₄ and BNH₆, respectively, along with metaborate anion including B-O bonds.

8.5. **Write** the balanced chemical equations for the hydrolysis of NaBH₄ and BNH₆.

One of the simplest stable borates is diboron trioxide (B₂O₃). Higher borates such as B₃O₆³⁻ having cyclic structures containing B-O-bonds can be formed. Since B₂O₃ is an acidic compound, it is easily reacted with water to produce boric acid (H₃BO₃). On the other hand, the high temperature and high-pressure reaction of B₂O₃ with ammonia yields two-dimensional boron nitride, which consists of planar graphite-like sheets of alternating B and N atoms.

8.6. **Write** the balanced chemical equations for the synthesis of boric acid and boron nitride.

8.7. **Draw** the molecular structures of the B₃O₆³⁻ ion, boric acid, and a single two-dimensional boron nitride sheet. **Hint:** show at least 10 B atoms in the boron nitride structure.

Furthermore, B-H compounds, called boranes, are an important class of boron compounds. The simplest stable borane is diborane (B₂H₆) and many of the higher boranes can be prepared by the pyrolysis of diborane. Diborane can be synthesized via metathesis of a boron halide and a hydride source.

8.8. **Write** a balanced chemical equation for the synthesis of diborane from the reaction of BF₃ and LiBH₄. **Hint:** both products are boron compounds.

8.9. **Draw** the molecular geometry of the diborane molecule. **Hint:** there is no B-B bond in the structure.

BH₃ (borane) is an unstable and highly reactive molecule. Therefore, it is not possible to isolate it as BH₃ under ordinary conditions. However, it can be stabilized via its reaction with carbon monoxide to yield borane carbonyl (BH₃CO) compound, which is an adduct of borane. The preparation of BH₃CO plays an important role in exploring the chemistry of boranes as it indicates the likely existence of the borane molecule.

8.10. **Sketch** the Lewis dot structure of BH₃ – CO molecule by showing the formal charges.
8.11. Which of the statements given in your answer sheet is observed in the C – O bond of a CO molecule upon the bond formation between BH₃ and CO? Tick the correct box.

☐ It gets longer because there will be π-back donation from BH₃ to CO.
☐ It gets longer because CO donates π-bonding electrons to BH₃.
☐ No or slight change on it because CO donates its mainly non-bonding electrons to BH₃.
☐ It gets shorter because CO donates π* anti-bonding electrons to BH₃.

Borazine consists of single and double bonded cyclic B – N units and hydrogen atoms attached to these atoms with the molecular formula B₃N₃H₆ and is isostructural to benzene. Borazine can be synthesized by using a two-step procedure including the synthesis of symmetrically trisubstituted chlorine derivatives of borazine (B₃N₃H₃Cl₃) from the reaction of ammonium chloride and boron trichloride, and then reduction of B₃N₃H₃Cl₃ with LiBH₄ in THF.

8.12. Write the balanced chemical equations for the two-step synthesis of borazine starting from ammonium chloride in THF (tetrahydrofuran). Hint: THF stabilizes one of the products by forming a Lewis acid-base adduct.

8.13. Draw the molecular structures of borazine and its symmetrically trisubstituted chlorine derivative.

Catalysts are substances that accelerate the rate of reactions by allowing them to proceed in a lower energy pathway. The catalytic activity of the catalysts is generally determined by the turnover frequency (TOF), which is calculated by dividing the molar amount of the product to the mole of active catalyst and the time (TOF = mole product/(mole catalyst x time)). A typical hydrolysis of BNH₆ was carried out in 10.0 mL of water by using 100.0 mM BNH₆ and 5.0 mg of CuPt/C catalyst (CuPt alloy nanoparticles supported on carbon black containing 8.2 wt% Pt atom). 67.25 mL of hydrogen gas was generated in 5 minutes.

8.14. Assuming the catalytic reaction is performed under standard conditions (1 atm and 273.15 K), calculate the TOF (min⁻¹) of the CuPt/C catalyst in terms of only Pt atoms in the hydrolysis of BNH₆ by considering the volume of the hydrogen gas generated.

As a result of detailed crystal analysis of a synthesized CuₓPtₚ alloy nanoparticles (the subscripts indicate molar percentages of the atoms in the alloy structure), it was determined that the face centered cubic (fcc) unit cell was formed by Pt atoms and the Pt atoms on the face of the fcc unit cell are supposed to be replaced with Cu atoms to form CuₓPtₚ displacement alloy nanoparticles. According to this information, answer the following questions.
8.15. **Determine** the composition of the alloy nanoparticles by finding \(x \) and \(y \) in the \(\text{Cu}_x\text{Pt}_y \).

8.16. **Sketch** the shape of the described crystal unit cell of \(\text{Cu}_x\text{Pt}_y \) alloy nanoparticles by showing the position of all atoms on the unit cell.

8.17. Another alloy has a \(\text{Cu}_2\text{Pt}_1 \) composition. Assume that this alloy also has a fcc unit cell with an edge length of 380 pm, but the Cu and Pt atoms are randomly distributed in the atomic positions. **Calculate** the density of this alloy in g/cm\(^3\).
Solution:

8.1. Write a balanced chemical equation for the synthesis of NaBH₄ from anhydrous borax.

\[
Na₂B₄O₇ + 16Na + 8H₂ + 7SiO₂ \rightarrow 4NaBH₄ + 7Na₂SiO₃ \quad (3 \text{ points})
\]

No partial point will be given if the stoichiometry is incorrect.
No penalty will be given for writing another silicate product if the balanced chemical equation is correct.

8.2. Write a balanced chemical equation for the synthesis of ammonia borane (BNH₆) from NaBH₄.

\[
2NaBH₄ + (NH₄)₂SO₄ \rightarrow 2BNH₆ + 2H₂ + Na₂SO₄ \quad (3 \text{ points})
\]

No partial point will be given if the stoichiometry is incorrect.
-1 point if molecular formula of the side product (Na₂SO₄) is written incorrectly.
-1 points if the hydrogen gas is not written in the product side

8.3. Draw the molecular geometry of the BH₄⁻ ion and BNH₆ molecule

-1 point if the molecular geometry is not shown

8.4. Calculate the hydrogen content of NaBH₄ and BNH₆ as a percentage by mass (wt%).

\[
\begin{align*}
\text{wt\% } H \ (NaBH}_4 \ &= \ \frac{4 \times A_w(H)}{M_w(NaBH}_4 \} \times 100 = \frac{4.032}{37.83} = 10.65\% \quad (2 \text{ points}) \\
\text{wt\% } H \ (BNH}_6 \ &= \ \frac{6 \times A_w(H)}{M_w(BNH}_6 \} \times 100 = \frac{6.048}{30.87} = 19.59\% \quad (2 \text{ points})
\end{align*}
\]

No partial point given if any mistake occurs.
8.5. **Write** the balanced chemical equations for the hydrolysis of NaBH$_4$ and BNH$_6$.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>$NaBH_4 + 2H_2O \rightarrow NaBO_2 + 4H_2$</td>
<td>(2 points)</td>
</tr>
<tr>
<td>$BNH_6 + 2H_2O \rightarrow NH_4BO_2 + 3H_2$</td>
<td>(2 points)</td>
</tr>
</tbody>
</table>

No partial points will be given if the total stoichiometry is incorrect

No penalty for writing NaBO$_2$ as Na$^+$ + BO$_2^-$ or NH$_4^+$ + BO$_2^-$

No penalty for writing other borates if the stoichiometry is correct

8.6. **Write** the balanced chemical equations for the synthesis of boric acid and boron nitride.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_2O_3 + 3H_2O \rightarrow 2H_2BO_3$</td>
<td>(2 points)</td>
</tr>
<tr>
<td>$B_2O_3 + 2NH_3 \xrightarrow{high,T/high,P} 2BN + 3H_2O$</td>
<td>(2 points)</td>
</tr>
</tbody>
</table>

No partial points will be given if the total stoichiometry is incorrect.

No penalty if the high T/high P on the reaction arrow is missed.

8.7. **Draw** the molecular structures of the B$_3$O$_6^{3-}$ ion, boric acid, and a single two-dimensional boron nitride sheet *(Hint: show at least 10 B atoms).*

<table>
<thead>
<tr>
<th>Structure</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>B$_3$O$_6^{3-}$</td>
<td>(2 points)</td>
</tr>
<tr>
<td>Boric acid</td>
<td>(2 points)</td>
</tr>
<tr>
<td>Boron nitride</td>
<td>(2 points)</td>
</tr>
</tbody>
</table>

No point if the cyclic structure is not shown

1 point if the charges on oxygen atoms are missed

1 point if the trigonal planar geometry is not shown

No point if less than 10 B atoms are represented in the structure

1 point if the continuing part is not shown

8.8. **Write** a balanced chemical equation for the synthesis of diborane from the reaction of BF$_3$ and LiBH$_4$. *(Hint: both products are boron compounds)*

<table>
<thead>
<tr>
<th>Equation</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3LiBH_4 + 4BF_3 \rightarrow 2B_2H_6 + 3LiBF_4$</td>
<td>(3 points)</td>
</tr>
</tbody>
</table>

No partial point will be given if the stoichiometry is incorrect

1 point if molecular formula of the side product (LiBF$_4$) is written incorrectly.
8.9. **Draw** the VSEPR molecular geometry of the diborane molecule **(Hint:** there is no B-B bond in the structure).

![Diborane structure](image)

-1 point if the 3D structure is not shown
No point if a B-B bond is presented in the structure

8.10. **Sketch** the Lewis dot structure of BH₃CO molecule by showing the formal charges.

![Lewis dot structure](image)

-1 point if the formal charges are not represented or represented incorrectly.
No penalty will be given if the arrow is not represented.

8.11. Which of the following statements is observed in the C – O bond of a CO molecule upon the bond formation between BH₃ and CO?

- It gets longer because there will be π-back donation from BH₃ to CO.
- It gets longer because CO donates π-bonding electrons to BH₃.
- ☒ No or slight change on it because CO donates its mainly non-bonding electrons to BH₃.
- It gets shorter because CO donates π* anti-bonding electrons to BH₃.

(2 points)
No point if more than one box is clicked.
8.12. **Write** the balanced chemical equations for the two-step synthesis of borazine starting from ammonium chloride in THF. (**Hint:** THF stabilizes one of the products).

\[
3 \text{NH}_4\text{Cl} + 3 \text{BCl}_3 \rightarrow \text{B}_3\text{N}_3\text{H}_3\text{Cl}_3 + 9 \text{HCl} \quad (2 \text{ points})
\]

\[
\text{B}_3\text{N}_3\text{H}_3\text{Cl}_3 + 3 \text{LiBH}_4 \rightarrow \text{B}_3\text{N}_3\text{H}_6 + 3 \text{LiCl} + 3 \text{THF} \cdot \text{BH}_3 \quad (2 \text{ points})
\]

No partial point will be given if the total stoichiometry is wrong.

1 point for each if molecular formula of the side products is written incorrectly.

8.13. **Draw** the molecular structures of borazine and its symmetrically trisubstituted chlorine derivative.

\[
\begin{align*}
\text{B}_3\text{N}_3\text{H}_6 & \quad (2 \text{ points}) \\
\text{B}_3\text{N}_3\text{H}_3\text{Cl}_3 & \quad (2 \text{ points})
\end{align*}
\]

No point will be given if the cyclic structure is not shown.

No point will be given if the Cl atoms are bonded to N atoms in \(\text{B}_3\text{N}_3\text{H}_3\text{Cl}_3\) molecule.

1 point for each molecule if the cyclic structure is shown but the double bonds are not.

Mesomeric structures will also be accepted.
8.14. Assuming the catalytic reaction is performed under standard conditions, calculate the TOF of the CuPt/C catalyst in terms of only Pt atoms in the hydrolysis of BNH₆ by considering the volume of the hydrogen gas generated.

\[
\text{moles of } H_2 \text{ gas generated} = \frac{67.25 \text{ mL}}{22.41 \text{ mL}} = 3.0 \text{ mmol} = 3 \times 10^{-3} \text{ mol } \quad (1 \text{ point})
\]

\[
\text{moles of } Pt = \left[\frac{0.005 \times 8.2}{100}\right]/195.1 = 2.1 \times 10^{-6} \text{ mol } \quad (1 \text{ point})
\]

\[
\text{TOF} = \frac{3 \times 10^{-3} \text{ mol } H_2}{(2.1 \times 10^{-6} \text{ mol } Pt) \times 5.0 \text{ min}} = 286 \text{ min}^{-1} \quad (2 \text{ points})
\]

(4 points in total)

No partial point given if any mistake occurs in the calculation of TOF.

8.15. Determine the composition of the alloy nanoparticles by finding x and y in the CuₓPtᵧ

In a regular fcc unit cell,

Corners = \(\frac{8 \times 1}{8} = 1 \text{ Pt atom}\)

Faces = \(\frac{6 \times 1}{2} = 3 \text{ Pt atoms}\)

After the replacement surface Pt atoms with Cu atoms,

Corners = \(\frac{8 \times 1}{8} = 1 \text{ Pt atom} \quad (1 \text{ point})\)

Faces = \(\frac{6 \times 1}{2} = 3 \text{ Cu atoms} \quad (1 \text{ point})\)

Alloy composition = CuₓPtᵧ (2 points), Cu₇₅Pt₂₅ is also accepted

(4 points in total)

No penalty will be given if the calculation of Pt atoms in a regular fcc unit cell or after replacements is not shown.
8.16. **Sketch** the shape of the described crystal unit cell of CuₓPtᵧ alloy nanoparticles by showing the position of all atoms on the unit cell.

![Diagram of the crystal unit cell](image)

(2 points)

-1 point if the number of atoms represented in the crystal unit is written incorrectly.
No point if the crystal unit cell structure is wrong.

8.17. Another alloy has a Cu₂Pt₁ composition. Assume that this alloy also has a fcc unit cell with an edge length of 380 pm, but the Cu and Pt atoms are randomly distributed in the atomic positions. **Calculate** the density of this alloy in g/cm³.

Actual unit cell composition: Cu₂.₆₆Pt₁.₃₃ (1 point)

\[V = A^3 \]
\[a = 380 \text{ pm} = 3.80 \times 10^{-8} \text{ cm} \]
\[V = (3.80 \times 10^{-8})^3 = 54.87 \times 10^{-24} \text{ cm}^3 \] (1 point)

\[d = \frac{m}{V} = \frac{[(2.66 \times (A_w(Cu)) + 1.33(A_w(Pt))] / N_A}{54.87 \times 10^{-24} \text{ cm}^3} = \frac{[(2.66 \times 63.54) + (195.1 \times 1.33)] / 6.02 \times 10^{23}}{54.87 \times 10^{-24}} = 12.97 \text{ g/cm}^3 \] (2 points)
(4 points in total)

1 point will be given if the density is calculated by not considering the actual alloy composition of Cu₂.₆₆Pt₁.₃₃ in the given fcc unit cell.
Problem 9. Quantification of Heavy Metal Ions

For the quantitative analysis of heavy metal ions in a factory’s wastewater pool, the following steps have been applied by an analyzer at 298 K:

Step 1) 10-mL samples of each were obtained from five different regions in a wastewater pool, mixed in a 100-mL beaker, and then stirred for 5 minutes using a magnetic stirrer.

Step 2) 10-mL of sample solution was taken from the 100-mL beaker and 142 mg of Na$_2$SO$_4$ was added while stirring, followed by transfer to a three-electrode cell as seen in Figure 1a. In this electrochemical cell, Pt wire, Ag/AgCl (3 M KCl), and Pt foil served as the working, reference, and counter electrodes, respectively.

Step 3) These electrodes were connected to a potentiostat and a constant potential of –0.50 V vs. Ag/AgCl for 14 minutes was applied as seen in Figure 1b (horizontal line). It is assumed that 14 min. is sufficient to complete the expected electrochemical reactions.

![Figure 1a](image1.png) ![Figure 1b](image2.png)

Figure 1. a) Electrochemical cell design; 1) Working electrode (Pt wire), 2) reference electrode (Ag/AgCl, 3M KCl), 3) counter electrode (Pt foil), 4) cell tap, 5) electrochemical cell, 6) 10-mL of sample solution. b) Potential change of working electrode as a function of time. y-axis: potential/V vs Ag/AgCl, x-axis: time/min.
Step 4) The electrodes were rinsed with distilled water, placed into another electrochemical cell including 10-mL of 0.1 M H₂SO₄ solution, and potential was scanned between –0.50 and +0.50 V as seen in Figure 1b (downward sloping line in 2 min.). Current vs. potential data for this step are presented in Figure 2a, which is like an excellent view of Mount Ararat (Ağrı Dağı), the highest mountain in Turkey (Figure 2b).

![Figure 2a](image1)

![Figure 2b](image2)

Figure 2. a) Potential scan of the working electrode as a function of current in 0.1 M H₂SO₄ solution after keeping it constant at a potential of –0.50 V in 10-mL of wastewater sample as seen in Figure 1b (horizontal line). y-axis: current/μA, x-axis: potential/V vs Ag/AgCl, b) A view of Great and Little Ararat peaks.

Step 5) Another 10-mL of the sample solution prepared in step 1 was taken and the processes explained in steps 2 and 3 were applied in that order. The electrodes were rinsed with distilled water and placed into 10-mL of 0.1 M H₂SO₄ solution. Then the potential of the working electrode was kept constant at +0.05 V for 14 minutes. It is assumed that 14 min. is sufficient to complete the expected electrochemical reactions.

Step 6) After step 5 was performed, the solution in the electrochemical cell was placed in a suitable oven to evaporate at 150 °C until dry solid was obtained.
Step 7) 5-mL of ethylenediaminetetraacetic acid (EDTA, H₄Y) (Figure 3) solution was added to the solid obtained in step 6 and it was shaken to dissolve. It is known that 1-mL of EDTA solution is equivalent to 3.85 mg/mL BaCO₃. Then, pH of the solution was adjusted to 10.0. Excess EDTA was titrated with standard 0.0010 M Ni(NO₃)₂ solution and it was observed that 95.60 mL of Ni(NO₃)₂ solution was consumed up to the endpoint.

![Chemical structure of EDTA (H₄Y).](image)

- In water saturated with H₂S, equilibrium concentration of [H₂S] is 0.1 M.
- K_{sp}(NiS) = 4.0 \times 10^{-20}; K_{sp}(CuS) = 1.0 \times 10^{-36}
- K_{a1}(H₂S) = 9.6 \times 10^{-8}; K_{a2}(H₂S) = 1.3 \times 10^{-14}

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E^\circ/V (at 298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2H₂O(l) + 2e^- \rightarrow H₂(g) + 2OH^- (aq)</td>
<td>-0.83</td>
</tr>
<tr>
<td>Ni^{2+} (aq) + 2e^- \rightarrow Ni(s)</td>
<td>-0.24</td>
</tr>
<tr>
<td>2H^+(aq) + 2e^- \rightarrow H₂(g)</td>
<td>0.00</td>
</tr>
<tr>
<td>Cu^{2+} (aq) + 2e^- \rightarrow Cu(s)</td>
<td>+0.34</td>
</tr>
<tr>
<td>Ag^+(aq) + e^- \rightarrow Ag(s)</td>
<td>+0.80</td>
</tr>
<tr>
<td>O₂(g) + 4H^+(aq) + 4e^- \rightarrow 2H₂O(l)</td>
<td>+1.23</td>
</tr>
</tbody>
</table>

9.1. Which of the following can be considered for peak 1 and peak 2 in Figure 2a, respectively? **Tick** the correct box on the answer sheet.

9.2. Which of the statements is expected, if the potential is applied as –1.2 V instead of –0.5 V at the first step (horizontal line) in Figure 1b? **Tick** the correct box on the answer sheet.

9.3. **Calculate** the scan rate of data presented in Figure 2a as mV/s at 298 K.

The potential of the following cell is measured as 0.437 V.

Pt, H₂(0.92 bar)|HCl(1.50 × 10⁻² M), AgCl(sat)|Ag
9.4. **Calculate** the standard electrode potential value (V) of half-cell of \(AgCl(s) + e^- \rightarrow Ag(s) + Cl^-(aq) \) at 298 K. *Note:* You must show all works.

9.5. Which of the statements is the main purpose of *step 5* in this analysis? **Tick** the correct box on the answer sheet.

9.6. **Write** net ionic equations for the complexation and the back titration reaction of *step 7* on the answer sheet.

9.7. **Calculate** Ni\(^{2+}\) concentration as mg/L in the wastewater of the factory. *Note:* You must show all works.

9.8. **Calculate** the minimum pH value for starting the precipitation of Ni\(^{2+}\) ions in the solution obtained in *step 5* by passing H\(_2\)S gas into the solution until saturation. If you cannot solve question 9.7, use 20 mg/L Ni\(^{2+}\) sample for this question. *Note:* You must show all works.
Solution:

9.1. Which of the following can be considered for peak 1 and peak 2 in Figure 2a, respectively? **Tick** the correct box on the answer sheet.

- ☐ Peak 1: electrochemical reduction of Ni / Peak 2: electrochemical reduction of Cu
- ☐ Peak 1: electrochemical reduction of Cu / Peak 2: electrochemical reduction of Ni
- ☐ Peak 1: electrochemical reduction of Ni / Peak 2: electrochemical oxidation of Cu
- ☒ Peak 1: electrochemical oxidation of Ni / Peak 2: electrochemical oxidation of Cu
- ☐ Peak 1: electrochemical oxidation of Cu / Peak 2: electrochemical oxidation of Ni

5 points for correct answer.

9.2. Which of the statement is expected, if the potential is applied as -1.2 V instead of -0.5 V at the first step (horizontal line) in Figure 1b? **Tick** the correct box on the answer sheet.

- ☐ NO evolution
- ☐ NO$_2$ evolution
- ☐ Nitrogen evolution
- ☐ Oxygen evolution
- ☒ Hydrogen evolution

5 points for correct answer.

9.3. **Calculate** the scan rate of data presented in Figure 2a as mV/s.

Calculation:
We can calculate the scan rate using the slope of Figure 1b (downward sloping line)

Scan rate = 1000 mV/120 s = 8.33 mV/s

8 points.
9.4. Calculate the standard electrode potential value of half-cell of \(\text{AgCl}(s) + e^- \rightarrow \text{Ag}(s) + \text{Cl}^- (aq) \). Note: You must show all works.

Calculation:

\[
E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} \quad (3 \text{ point})
\]

Half – reactions;
\(\text{AgCl}(s) + e^- \rightarrow \text{Ag}(s) + \text{Cl}^-(aq) \)
\(2\text{H}^+(aq) + 2e^- \rightarrow \text{H}_2(g) \)

\[
E_{\text{cell}} = \left(E_{\text{AgCl}/\text{Ag}}^0 - 0.0592 \log[\text{Cl}^-] \right) - \left(E_{\text{H}^+/\text{H}_2}^0 - \frac{0.0592}{2} \log \frac{P_{\text{H}_2}}{[\text{H}^+]^2} \right) \quad (7 \text{ points})
\]

\[
0.437 = \left(E_{\text{AgCl}/\text{Ag}}^0 - 0.0592 \log 1.5 \times 10^{-2} \right) - \left(0.00 - \frac{0.0592}{2} \log \frac{0.92}{(1.5 \times 10^{-2})^2} \right) \quad (4 \text{ points})
\]

\[
E_{\text{AgCl}/\text{Ag}}^0 = 0.22 \text{ V} \quad (2 \text{ point})
\]

–2 points for each calculation error.
–2 points for each wrong unit.

9.5. Which of the statements is the main purpose of step 5 in this analysis? Tick the correct box on the answer sheet.

☐ Modification of Pt wire with Ni–Cu alloy film
☐ Modification of Pt wire with Ni film
☐ Electrochemical stripping of both Cu and Ni from Cu–Ni-modified Pt wire to the solution
☐ Electrochemical stripping of Cu from Cu–Ni-modified Pt wire to the solution
☒ Electrochemical stripping of Ni from Cu–Ni-modified Pt wire to the solution

5 points for correct answer.
9.6. **Write** net ionic equations for the complexation and the back titration reaction of *step 7* in your answer sheet.

Complexation: \(Ni^{2+}(aq) + Y^{4-}(aq) \rightarrow NiY^{2-}(aq) \) or
\(Ni^{2+}(aq) + HY^{3-}(aq) \rightarrow NiHY^{-}(aq) \)

Back titration: \(Ni^{2+}(aq) + Y^{4-}(aq) \rightarrow NiY^{2-}(aq) \) or
\(Ni^{2+}(aq) + HY^{3-}(aq) \rightarrow NiHY^{-}(aq) \)

3 points for each correct answer.

9.7. **Calculate** \(Ni^{2+} \) concentration as \(mg/L \) in the wastewater of the factory. *Note:* You must show all works.

Calculation:
5 pieces of 10-mL samples were collected and the total sample volume is 50-mL. 10-mL of the part was taken from this 50-mL sample. *(2 point)*

EDTA titration: 3.85 mg BaCO\(_3\)/mL EDTA
\(Ba^{2+}(aq) + Y^{4-}(aq) \rightarrow BaY^{2-}(aq) \)

\[
[EDTA] = \frac{\frac{3.85 \text{ mg BaCO}_3}{1 \text{ mL EDTA}} \times \frac{1 \text{ mmol EDTA}}{1 \text{ mmol BaCO}_3}}{1 \text{ mL EDTA}} = 0.01954 \text{ M EDTA} \quad (8 \text{ points})
\]

\(Ni^{+2}(aq) + Y^{-4}(aq) \rightarrow NiY^{-2}(aq) \)

\[
\text{mmol}_{Ni^{+2}} = \left(\frac{0.01954 \text{ mmol EDTA}}{1 \text{ mL EDTA}} \times 5.00 \text{ mL EDTA} \right) - \left(\frac{0.0010 \text{ mmol Ni}^{2+}}{1 \text{ mL Ni}^{2+}} \times 95.60 \text{ mL Ni}^{2+} \times \frac{1 \text{ mmol EDTA}}{1 \text{ mmol Ni}^{2+}} \right) = 0.0021 \text{ mmol Ni}^{2+} \quad (12 \text{ points})
\]

\[
C_{Ni^{2+}} = \frac{0.0021 \text{ mmol Ni}^{2+} \times 58.7 \text{ mg Ni}^{2+}}{0.05 \text{ L sample} \times \frac{0.05 \text{ mL}}{1 \text{ mmol Ni}^{2+}} \times \frac{50 \text{ mL}}{1 \text{ mL}}} = 12.33 \text{ mg/L} \quad (3 \text{ points})
\]

–3 points for each calculation error.

–3 points for each wrong unit.

–3 points for each wrong conversion factor.
9.8. Calculate the minimum pH value for starting the precipitation of Ni\(^{2+}\) ions in the solution obtained in step 5 by passing H\(_2\)S gas into the solution until saturation. If you cannot solve question 9.7, use 20 mg/L Ni\(^{2+}\) sample for this question. Note: You must show all works.

Calculation:

\[
[Ni^{2+}] = \frac{0.0021 \text{ mmol} \times \frac{Ni^{2+}}{10 \text{ ml sample}}}{2.1 \times 10^{-4} \text{ M}} \quad \text{or} \quad [Ni^{2+}] = \frac{0.01233 \text{ g Ni}^{2+}}{58.7 \text{ g/mol} \times \frac{1 \text{ L sample}}{1}} = 2.1 \times 10^{-4} \text{ M}
\]

(6 points)

\(NiS \rightleftharpoons Ni^{2+}(aq) + S^{2-}(aq)
\)

\[4.0 \times 10^{-20} = 2.1 \times 10^{-4} \times [S^{2-}] \]

\[[S^{2-}] = 1.905 \times 10^{-16} \text{ M} \]

(6 points)

\(H_2S + H_2O \rightleftharpoons HS^- + H_3O^+ \quad Ka_1 = 9.6 \times 10^{-8} = \frac{[HS^-][H_3O^+]}{[H_2S]} \)

(1 point)

\(HS^- + H_2O \rightleftharpoons S^{2-} + H_3O^+ \quad Ka_2 = 1.3 \times 10^{-14} = \frac{[S^{2-}][H_3O^+]}{[HS^-]} \)

(1 point)

0.1 = [H\(_2\)S] + [HS\(^-\)] + [S\(^{2-}\)]

(1 points)

[H\(_2\)S] \gg [HS\(^-\)] + [S\(^{2-}\)] and [H\(_2\)S] = 0.1 M

(1 points)

\[Ka_1 \times Ka_2 = 1.25 \times 10^{-21} = \frac{[S^{2-}][H_3O^+]^2}{[H_2S]} \]

(7 points)

\[1.25 \times 10^{-21} = \frac{1.905 \times 10^{-16}[H_3O^+]^2}{0.1} \]

(4 points)

\[[H_3O^+] = 8.1 \times 10^{-4} \text{ M} \]

\(pH = 3.09 \)

(3 points)

If Ni\(^{2+}\) concentration is taken 20 mg/L, the result is pH = 2.99

- 3 points for each calculation error.
- 3 points for each wrong unit.
- 3 points for each wrong conversion factor.
The End